A Bayesian machine learning approach for drug target identification using diverse data types
Drug target identification is a crucial step in drug development. Here, the authors introduce a Bayesian machine learning framework that integrates multiple data types to predict the targets of small molecules, enabling identification of a new set of microtubule inhibitors and the target of the anti...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fd2f68d27a0449ed8826ad49e3a65d1c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:fd2f68d27a0449ed8826ad49e3a65d1c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:fd2f68d27a0449ed8826ad49e3a65d1c2021-12-02T17:32:08ZA Bayesian machine learning approach for drug target identification using diverse data types10.1038/s41467-019-12928-62041-1723https://doaj.org/article/fd2f68d27a0449ed8826ad49e3a65d1c2019-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-12928-6https://doaj.org/toc/2041-1723Drug target identification is a crucial step in drug development. Here, the authors introduce a Bayesian machine learning framework that integrates multiple data types to predict the targets of small molecules, enabling identification of a new set of microtubule inhibitors and the target of the anti-cancer molecule ONC201.Neel S. MadhukarPrashant K. KhadeLinda HuangKaitlyn GayvertGiuseppe GallettiMartin StogniewJoshua E. AllenParaskevi GiannakakouOlivier ElementoNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-14 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Neel S. Madhukar Prashant K. Khade Linda Huang Kaitlyn Gayvert Giuseppe Galletti Martin Stogniew Joshua E. Allen Paraskevi Giannakakou Olivier Elemento A Bayesian machine learning approach for drug target identification using diverse data types |
description |
Drug target identification is a crucial step in drug development. Here, the authors introduce a Bayesian machine learning framework that integrates multiple data types to predict the targets of small molecules, enabling identification of a new set of microtubule inhibitors and the target of the anti-cancer molecule ONC201. |
format |
article |
author |
Neel S. Madhukar Prashant K. Khade Linda Huang Kaitlyn Gayvert Giuseppe Galletti Martin Stogniew Joshua E. Allen Paraskevi Giannakakou Olivier Elemento |
author_facet |
Neel S. Madhukar Prashant K. Khade Linda Huang Kaitlyn Gayvert Giuseppe Galletti Martin Stogniew Joshua E. Allen Paraskevi Giannakakou Olivier Elemento |
author_sort |
Neel S. Madhukar |
title |
A Bayesian machine learning approach for drug target identification using diverse data types |
title_short |
A Bayesian machine learning approach for drug target identification using diverse data types |
title_full |
A Bayesian machine learning approach for drug target identification using diverse data types |
title_fullStr |
A Bayesian machine learning approach for drug target identification using diverse data types |
title_full_unstemmed |
A Bayesian machine learning approach for drug target identification using diverse data types |
title_sort |
bayesian machine learning approach for drug target identification using diverse data types |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/fd2f68d27a0449ed8826ad49e3a65d1c |
work_keys_str_mv |
AT neelsmadhukar abayesianmachinelearningapproachfordrugtargetidentificationusingdiversedatatypes AT prashantkkhade abayesianmachinelearningapproachfordrugtargetidentificationusingdiversedatatypes AT lindahuang abayesianmachinelearningapproachfordrugtargetidentificationusingdiversedatatypes AT kaitlyngayvert abayesianmachinelearningapproachfordrugtargetidentificationusingdiversedatatypes AT giuseppegalletti abayesianmachinelearningapproachfordrugtargetidentificationusingdiversedatatypes AT martinstogniew abayesianmachinelearningapproachfordrugtargetidentificationusingdiversedatatypes AT joshuaeallen abayesianmachinelearningapproachfordrugtargetidentificationusingdiversedatatypes AT paraskevigiannakakou abayesianmachinelearningapproachfordrugtargetidentificationusingdiversedatatypes AT olivierelemento abayesianmachinelearningapproachfordrugtargetidentificationusingdiversedatatypes AT neelsmadhukar bayesianmachinelearningapproachfordrugtargetidentificationusingdiversedatatypes AT prashantkkhade bayesianmachinelearningapproachfordrugtargetidentificationusingdiversedatatypes AT lindahuang bayesianmachinelearningapproachfordrugtargetidentificationusingdiversedatatypes AT kaitlyngayvert bayesianmachinelearningapproachfordrugtargetidentificationusingdiversedatatypes AT giuseppegalletti bayesianmachinelearningapproachfordrugtargetidentificationusingdiversedatatypes AT martinstogniew bayesianmachinelearningapproachfordrugtargetidentificationusingdiversedatatypes AT joshuaeallen bayesianmachinelearningapproachfordrugtargetidentificationusingdiversedatatypes AT paraskevigiannakakou bayesianmachinelearningapproachfordrugtargetidentificationusingdiversedatatypes AT olivierelemento bayesianmachinelearningapproachfordrugtargetidentificationusingdiversedatatypes |
_version_ |
1718380408402345984 |