A Bayesian machine learning approach for drug target identification using diverse data types

Drug target identification is a crucial step in drug development. Here, the authors introduce a Bayesian machine learning framework that integrates multiple data types to predict the targets of small molecules, enabling identification of a new set of microtubule inhibitors and the target of the anti...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Neel S. Madhukar, Prashant K. Khade, Linda Huang, Kaitlyn Gayvert, Giuseppe Galletti, Martin Stogniew, Joshua E. Allen, Paraskevi Giannakakou, Olivier Elemento
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/fd2f68d27a0449ed8826ad49e3a65d1c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:fd2f68d27a0449ed8826ad49e3a65d1c
record_format dspace
spelling oai:doaj.org-article:fd2f68d27a0449ed8826ad49e3a65d1c2021-12-02T17:32:08ZA Bayesian machine learning approach for drug target identification using diverse data types10.1038/s41467-019-12928-62041-1723https://doaj.org/article/fd2f68d27a0449ed8826ad49e3a65d1c2019-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-12928-6https://doaj.org/toc/2041-1723Drug target identification is a crucial step in drug development. Here, the authors introduce a Bayesian machine learning framework that integrates multiple data types to predict the targets of small molecules, enabling identification of a new set of microtubule inhibitors and the target of the anti-cancer molecule ONC201.Neel S. MadhukarPrashant K. KhadeLinda HuangKaitlyn GayvertGiuseppe GallettiMartin StogniewJoshua E. AllenParaskevi GiannakakouOlivier ElementoNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-14 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Neel S. Madhukar
Prashant K. Khade
Linda Huang
Kaitlyn Gayvert
Giuseppe Galletti
Martin Stogniew
Joshua E. Allen
Paraskevi Giannakakou
Olivier Elemento
A Bayesian machine learning approach for drug target identification using diverse data types
description Drug target identification is a crucial step in drug development. Here, the authors introduce a Bayesian machine learning framework that integrates multiple data types to predict the targets of small molecules, enabling identification of a new set of microtubule inhibitors and the target of the anti-cancer molecule ONC201.
format article
author Neel S. Madhukar
Prashant K. Khade
Linda Huang
Kaitlyn Gayvert
Giuseppe Galletti
Martin Stogniew
Joshua E. Allen
Paraskevi Giannakakou
Olivier Elemento
author_facet Neel S. Madhukar
Prashant K. Khade
Linda Huang
Kaitlyn Gayvert
Giuseppe Galletti
Martin Stogniew
Joshua E. Allen
Paraskevi Giannakakou
Olivier Elemento
author_sort Neel S. Madhukar
title A Bayesian machine learning approach for drug target identification using diverse data types
title_short A Bayesian machine learning approach for drug target identification using diverse data types
title_full A Bayesian machine learning approach for drug target identification using diverse data types
title_fullStr A Bayesian machine learning approach for drug target identification using diverse data types
title_full_unstemmed A Bayesian machine learning approach for drug target identification using diverse data types
title_sort bayesian machine learning approach for drug target identification using diverse data types
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/fd2f68d27a0449ed8826ad49e3a65d1c
work_keys_str_mv AT neelsmadhukar abayesianmachinelearningapproachfordrugtargetidentificationusingdiversedatatypes
AT prashantkkhade abayesianmachinelearningapproachfordrugtargetidentificationusingdiversedatatypes
AT lindahuang abayesianmachinelearningapproachfordrugtargetidentificationusingdiversedatatypes
AT kaitlyngayvert abayesianmachinelearningapproachfordrugtargetidentificationusingdiversedatatypes
AT giuseppegalletti abayesianmachinelearningapproachfordrugtargetidentificationusingdiversedatatypes
AT martinstogniew abayesianmachinelearningapproachfordrugtargetidentificationusingdiversedatatypes
AT joshuaeallen abayesianmachinelearningapproachfordrugtargetidentificationusingdiversedatatypes
AT paraskevigiannakakou abayesianmachinelearningapproachfordrugtargetidentificationusingdiversedatatypes
AT olivierelemento abayesianmachinelearningapproachfordrugtargetidentificationusingdiversedatatypes
AT neelsmadhukar bayesianmachinelearningapproachfordrugtargetidentificationusingdiversedatatypes
AT prashantkkhade bayesianmachinelearningapproachfordrugtargetidentificationusingdiversedatatypes
AT lindahuang bayesianmachinelearningapproachfordrugtargetidentificationusingdiversedatatypes
AT kaitlyngayvert bayesianmachinelearningapproachfordrugtargetidentificationusingdiversedatatypes
AT giuseppegalletti bayesianmachinelearningapproachfordrugtargetidentificationusingdiversedatatypes
AT martinstogniew bayesianmachinelearningapproachfordrugtargetidentificationusingdiversedatatypes
AT joshuaeallen bayesianmachinelearningapproachfordrugtargetidentificationusingdiversedatatypes
AT paraskevigiannakakou bayesianmachinelearningapproachfordrugtargetidentificationusingdiversedatatypes
AT olivierelemento bayesianmachinelearningapproachfordrugtargetidentificationusingdiversedatatypes
_version_ 1718380408402345984