Explainable machine-learning predictions for complications after pediatric congenital heart surgery
Abstract The quality of treatment and prognosis after pediatric congenital heart surgery remains unsatisfactory. A reliable prediction model for postoperative complications of congenital heart surgery patients is essential to enable prompt initiation of therapy and improve the quality of prognosis....
Guardado en:
Autores principales: | Xian Zeng, Yaoqin Hu, Liqi Shu, Jianhua Li, Huilong Duan, Qiang Shu, Haomin Li |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fd38e8681dfe4d99b77c9bb6b1928ada |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Prediction of central venous catheter-associated deep venous thrombosis in pediatric critical care settings
por: Haomin Li, et al.
Publicado: (2021) -
Predictors of Postoperative Rehabilitation Therapy Following Congenital Heart Surgery
por: Ana Ubeda Tikkanen, et al.
Publicado: (2018) -
Simplified Pediatric Index of Mortality 3 Score by Explainable Machine Learning Algorithm
por: Orkun Baloglu, MD, et al.
Publicado: (2021) -
Detecting neurodevelopmental trajectories in congenital heart diseases with a machine-learning approach
por: Elisa Cainelli, et al.
Publicado: (2021) -
Congenital heart disease
Publicado: (2006)