A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study.

<h4>Introduction</h4>Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary hypertension (PH). We propose applying Machine Learning (ML), and Deep Learning (DL) approaches to fetuses and newbo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ilaria Amodeo, Giorgio De Nunzio, Genny Raffaeli, Irene Borzani, Alice Griggio, Luana Conte, Francesco Macchini, Valentina Condò, Nicola Persico, Isabella Fabietti, Stefano Ghirardello, Maria Pierro, Benedetta Tafuri, Giuseppe Como, Donato Cascio, Mariarosa Colnaghi, Fabio Mosca, Giacomo Cavallaro
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/fd3fe0cd7fc949528acd0f5cf4d51352
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:fd3fe0cd7fc949528acd0f5cf4d51352
record_format dspace
spelling oai:doaj.org-article:fd3fe0cd7fc949528acd0f5cf4d513522021-12-02T20:07:41ZA maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study.1932-620310.1371/journal.pone.0259724https://doaj.org/article/fd3fe0cd7fc949528acd0f5cf4d513522021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0259724https://doaj.org/toc/1932-6203<h4>Introduction</h4>Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary hypertension (PH). We propose applying Machine Learning (ML), and Deep Learning (DL) approaches to fetuses and newborns with CDH to develop forecasting models in prenatal epoch, based on the integrated analysis of clinical data, to provide neonatal PH as the first outcome and, possibly: favorable response to fetal endoscopic tracheal occlusion (FETO), need for Extracorporeal Membrane Oxygenation (ECMO), survival to ECMO, and death. Moreover, we plan to produce a (semi)automatic fetus lung segmentation system in Magnetic Resonance Imaging (MRI), which will be useful during project implementation but will also be an important tool itself to standardize lung volume measures for CDH fetuses.<h4>Methods and analytics</h4>Patients with isolated CDH from singleton pregnancies will be enrolled, whose prenatal checks were performed at the Fetal Surgery Unit of the Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (Milan, Italy) from the 30th week of gestation. A retrospective data collection of clinical and radiological variables from newborns' and mothers' clinical records will be performed for eligible patients born between 01/01/2012 and 31/12/2020. The native sequences from fetal magnetic resonance imaging (MRI) will be collected. Data from different sources will be integrated and analyzed using ML and DL, and forecasting algorithms will be developed for each outcome. Methods of data augmentation and dimensionality reduction (feature selection and extraction) will be employed to increase sample size and avoid overfitting. A software system for automatic fetal lung volume segmentation in MRI based on the DL 3D U-NET approach will also be developed.<h4>Ethics and dissemination</h4>This retrospective study received approval from the local ethics committee (Milan Area 2, Italy). The development of predictive models in CDH outcomes will provide a key contribution in disease prediction, early targeted interventions, and personalized management, with an overall improvement in care quality, resource allocation, healthcare, and family savings. Our findings will be validated in a future prospective multicenter cohort study.<h4>Registration</h4>The study was registered at ClinicalTrials.gov with the identifier NCT04609163.Ilaria AmodeoGiorgio De NunzioGenny RaffaeliIrene BorzaniAlice GriggioLuana ConteFrancesco MacchiniValentina CondòNicola PersicoIsabella FabiettiStefano GhirardelloMaria PierroBenedetta TafuriGiuseppe ComoDonato CascioMariarosa ColnaghiFabio MoscaGiacomo CavallaroPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 11, p e0259724 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Ilaria Amodeo
Giorgio De Nunzio
Genny Raffaeli
Irene Borzani
Alice Griggio
Luana Conte
Francesco Macchini
Valentina Condò
Nicola Persico
Isabella Fabietti
Stefano Ghirardello
Maria Pierro
Benedetta Tafuri
Giuseppe Como
Donato Cascio
Mariarosa Colnaghi
Fabio Mosca
Giacomo Cavallaro
A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study.
description <h4>Introduction</h4>Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary hypertension (PH). We propose applying Machine Learning (ML), and Deep Learning (DL) approaches to fetuses and newborns with CDH to develop forecasting models in prenatal epoch, based on the integrated analysis of clinical data, to provide neonatal PH as the first outcome and, possibly: favorable response to fetal endoscopic tracheal occlusion (FETO), need for Extracorporeal Membrane Oxygenation (ECMO), survival to ECMO, and death. Moreover, we plan to produce a (semi)automatic fetus lung segmentation system in Magnetic Resonance Imaging (MRI), which will be useful during project implementation but will also be an important tool itself to standardize lung volume measures for CDH fetuses.<h4>Methods and analytics</h4>Patients with isolated CDH from singleton pregnancies will be enrolled, whose prenatal checks were performed at the Fetal Surgery Unit of the Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (Milan, Italy) from the 30th week of gestation. A retrospective data collection of clinical and radiological variables from newborns' and mothers' clinical records will be performed for eligible patients born between 01/01/2012 and 31/12/2020. The native sequences from fetal magnetic resonance imaging (MRI) will be collected. Data from different sources will be integrated and analyzed using ML and DL, and forecasting algorithms will be developed for each outcome. Methods of data augmentation and dimensionality reduction (feature selection and extraction) will be employed to increase sample size and avoid overfitting. A software system for automatic fetal lung volume segmentation in MRI based on the DL 3D U-NET approach will also be developed.<h4>Ethics and dissemination</h4>This retrospective study received approval from the local ethics committee (Milan Area 2, Italy). The development of predictive models in CDH outcomes will provide a key contribution in disease prediction, early targeted interventions, and personalized management, with an overall improvement in care quality, resource allocation, healthcare, and family savings. Our findings will be validated in a future prospective multicenter cohort study.<h4>Registration</h4>The study was registered at ClinicalTrials.gov with the identifier NCT04609163.
format article
author Ilaria Amodeo
Giorgio De Nunzio
Genny Raffaeli
Irene Borzani
Alice Griggio
Luana Conte
Francesco Macchini
Valentina Condò
Nicola Persico
Isabella Fabietti
Stefano Ghirardello
Maria Pierro
Benedetta Tafuri
Giuseppe Como
Donato Cascio
Mariarosa Colnaghi
Fabio Mosca
Giacomo Cavallaro
author_facet Ilaria Amodeo
Giorgio De Nunzio
Genny Raffaeli
Irene Borzani
Alice Griggio
Luana Conte
Francesco Macchini
Valentina Condò
Nicola Persico
Isabella Fabietti
Stefano Ghirardello
Maria Pierro
Benedetta Tafuri
Giuseppe Como
Donato Cascio
Mariarosa Colnaghi
Fabio Mosca
Giacomo Cavallaro
author_sort Ilaria Amodeo
title A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study.
title_short A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study.
title_full A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study.
title_fullStr A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study.
title_full_unstemmed A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study.
title_sort machine and deep learning approach to predict pulmonary hypertension in newborns with congenital diaphragmatic hernia (clannish): protocol for a retrospective study.
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/fd3fe0cd7fc949528acd0f5cf4d51352
work_keys_str_mv AT ilariaamodeo amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT giorgiodenunzio amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT gennyraffaeli amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT ireneborzani amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT alicegriggio amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT luanaconte amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT francescomacchini amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT valentinacondo amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT nicolapersico amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT isabellafabietti amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT stefanoghirardello amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT mariapierro amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT benedettatafuri amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT giuseppecomo amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT donatocascio amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT mariarosacolnaghi amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT fabiomosca amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT giacomocavallaro amachineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT ilariaamodeo machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT giorgiodenunzio machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT gennyraffaeli machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT ireneborzani machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT alicegriggio machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT luanaconte machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT francescomacchini machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT valentinacondo machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT nicolapersico machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT isabellafabietti machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT stefanoghirardello machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT mariapierro machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT benedettatafuri machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT giuseppecomo machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT donatocascio machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT mariarosacolnaghi machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT fabiomosca machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
AT giacomocavallaro machineanddeeplearningapproachtopredictpulmonaryhypertensioninnewbornswithcongenitaldiaphragmaticherniaclannishprotocolforaretrospectivestudy
_version_ 1718375280071933952