Compare analysis for the nanotoxicity effects of different amounts of endocytic iron oxide nanoparticles at single cell level.

Developing methods that evaluate the cellular uptake of magnetic nanoparticles (MNPs) and nanotoxicity effects at single-cellular level are needed. In this study, magnetophoresis combining fluorescence based cytotoxicity assay was proposed to assess the viability and the single-cellular MNPs uptake...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Chen-Yu Huang, Tzong-Rong Ger, Zung-Hang Wei, Mei-Feng Lai
Format: article
Langue:EN
Publié: Public Library of Science (PLoS) 2014
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/fd4774548bf7453b8b78b2f26eb12ae2
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Developing methods that evaluate the cellular uptake of magnetic nanoparticles (MNPs) and nanotoxicity effects at single-cellular level are needed. In this study, magnetophoresis combining fluorescence based cytotoxicity assay was proposed to assess the viability and the single-cellular MNPs uptake simultaneously. Malignant cells (SKHep-1, HepG2, HeLa) were incubated with 10 nm anionic iron oxide nanoparticles. Prussian blue stain was performed to visualize the distribution of magnetic nanoparticles. MTT and fluorescence based assay analyzed the cytotoxicity effects of the bulk cell population and single cell, respectively. DAPI/PI stained was applied to evaluate death mechanism. The number of intracellular MNPs was found to be strongly correlated with the cell death. Significant differences between cellular MNP uptake in living and dead cells were observed. The method could be useful for future study of the nanotoxicity induced by MNPs.