A New Convolutional Kernel Classifier for Hyperspectral Image Classification
Multiplekernel learning (MKL) algorithms are among the most successful classification methods for hyperspectral data. Nevertheless, these algorithms suffer from two main drawbacks of computational complexity and debility to admit to the end-to-end learning paradigm. This article proposed a convoluti...
Guardado en:
Autores principales: | Mohsen Ansari, Saeid Homayouni, Abdolreza Safari, Saeid Niazmardi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fd4f579c698548bc9486964d61cb91d0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hyperspectral Unmixing Based on Spectral and Sparse Deep Convolutional Neural Networks
por: Lulu Wan, et al.
Publicado: (2021) -
Oil Spill Detection Based on Multiscale Multidimensional Residual CNN for Optical Remote Sensing Imagery
por: Seyd Teymoor Seydi, et al.
Publicado: (2021) -
Hyperspectral Image Classification Based on Multilevel Joint Feature Extraction Network
por: Xiaochen Lu, et al.
Publicado: (2021) -
Patch-Free Bilateral Network for Hyperspectral Image Classification Using Limited Samples
por: Bing Liu, et al.
Publicado: (2021) -
Constrained Nonnegative Matrix Factorization for Blind Hyperspectral Unmixing Incorporating Endmember Independence
por: E. M. M. B. Ekanayake, et al.
Publicado: (2021)