Heterogeneous networks: Fair power allocation in LTE-A uplink scenarios.

Effective management of radio resources and service quality assurance are two of the essential aspects to furnish high-quality service in Long Term Evolution (LTE) networks. Despite the base station involving several ingenious scheduling schemes for resource allocation, the intended outcome might be...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Reben Kurda
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/fd57dcdbfa354fadb86568a5d41a62d5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:fd57dcdbfa354fadb86568a5d41a62d5
record_format dspace
spelling oai:doaj.org-article:fd57dcdbfa354fadb86568a5d41a62d52021-12-02T20:10:19ZHeterogeneous networks: Fair power allocation in LTE-A uplink scenarios.1932-620310.1371/journal.pone.0252421https://doaj.org/article/fd57dcdbfa354fadb86568a5d41a62d52021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0252421https://doaj.org/toc/1932-6203Effective management of radio resources and service quality assurance are two of the essential aspects to furnish high-quality service in Long Term Evolution (LTE) networks. Despite the base station involving several ingenious scheduling schemes for resource allocation, the intended outcome might be influenced by the interference, especially in heterogeneous scenarios, where many kinds of small cells can be deployed under the coverage of macrocell area. To develop the network of small cells, it is essential to take into account such boundaries, in particular, mobility, interference and resources scheduling a strategy which assist getting a higher spectral efficiency in anticipate small cells. Another challenge with small cellular network deployment is further analyzing the impact of power control techniques in the uplink direction for the network performance. With that being said, this article investigates the problem of interference in LTE-advanced heterogeneous networks. The proposed scheme allows mitigation inter-cell interference through fractional self-powered control performed at each femtocell user. This study analyzes a scheme with optimum power value that provides a compromise between the served uplink signal within unwanted interference plus noise ratio to enhance spectral efficiency in terms of throughput. In particular, the maximum transmit power for user equipment in uplink direction should be reviewed for small cells as a major contributor to the interference. The simulation results showed that the proposed fractional power control approach can outperform the traditional power control employed as a full compensation mode in small cell uplinks.Reben KurdaPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 6, p e0252421 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Reben Kurda
Heterogeneous networks: Fair power allocation in LTE-A uplink scenarios.
description Effective management of radio resources and service quality assurance are two of the essential aspects to furnish high-quality service in Long Term Evolution (LTE) networks. Despite the base station involving several ingenious scheduling schemes for resource allocation, the intended outcome might be influenced by the interference, especially in heterogeneous scenarios, where many kinds of small cells can be deployed under the coverage of macrocell area. To develop the network of small cells, it is essential to take into account such boundaries, in particular, mobility, interference and resources scheduling a strategy which assist getting a higher spectral efficiency in anticipate small cells. Another challenge with small cellular network deployment is further analyzing the impact of power control techniques in the uplink direction for the network performance. With that being said, this article investigates the problem of interference in LTE-advanced heterogeneous networks. The proposed scheme allows mitigation inter-cell interference through fractional self-powered control performed at each femtocell user. This study analyzes a scheme with optimum power value that provides a compromise between the served uplink signal within unwanted interference plus noise ratio to enhance spectral efficiency in terms of throughput. In particular, the maximum transmit power for user equipment in uplink direction should be reviewed for small cells as a major contributor to the interference. The simulation results showed that the proposed fractional power control approach can outperform the traditional power control employed as a full compensation mode in small cell uplinks.
format article
author Reben Kurda
author_facet Reben Kurda
author_sort Reben Kurda
title Heterogeneous networks: Fair power allocation in LTE-A uplink scenarios.
title_short Heterogeneous networks: Fair power allocation in LTE-A uplink scenarios.
title_full Heterogeneous networks: Fair power allocation in LTE-A uplink scenarios.
title_fullStr Heterogeneous networks: Fair power allocation in LTE-A uplink scenarios.
title_full_unstemmed Heterogeneous networks: Fair power allocation in LTE-A uplink scenarios.
title_sort heterogeneous networks: fair power allocation in lte-a uplink scenarios.
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/fd57dcdbfa354fadb86568a5d41a62d5
work_keys_str_mv AT rebenkurda heterogeneousnetworksfairpowerallocationinlteauplinkscenarios
_version_ 1718375039571591168