High-precision quantum algorithms for partial differential equations
Quantum computers can produce a quantum encoding of the solution of a system of differential equations exponentially faster than a classical algorithm can produce an explicit description. However, while high-precision quantum algorithms for linear ordinary differential equations are well established...
Guardado en:
Autores principales: | Andrew M. Childs, Jin-Peng Liu, Aaron Ostrander |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fd5b1323d391416f8b295dc5981b37d7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Students’ difficulties with partial differential equations in quantum mechanics
por: Tao Tu, et al.
Publicado: (2020) -
A Partial Differential Equation-Based Image Restoration Method in Environmental Art Design
por: Chen Li
Publicado: (2021) -
Image Enhancement of Cross-Border E-Commerce Logistics Video Surveillance Based on Partial Differential Equations
por: Xiaosheng Yu, et al.
Publicado: (2021) -
Image Recognition of Pledges of Capital Stock in Small- and Medium-Sized Enterprises Based on Partial Differential Equations
por: Dehui Zhou
Publicado: (2021) -
Denoising of Tourist Street Scene Image Based on ROF Model of Second-Order Partial Differential Equation
por: Xiaofeng Yang
Publicado: (2021)