A Preliminary Assessment of a Newly-Defined Multispectral Hue Space for Retrieving River Depth with Optical Imagery and In Situ Calibration Data

Bathymetry is a key element in the modeling of river systems for flood mapping, geomorphology, or stream habitat characterization. Standard practices rely on the interpolation of in situ depth measurements obtained with differential GPS or total station surveys, while more advanced techniques involv...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Nicolas Le Moine, Mounir Mahdade
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/fd6b61279cdc4b9693cc3cfeca3d3bbc
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:fd6b61279cdc4b9693cc3cfeca3d3bbc
record_format dspace
spelling oai:doaj.org-article:fd6b61279cdc4b9693cc3cfeca3d3bbc2021-11-11T18:56:39ZA Preliminary Assessment of a Newly-Defined Multispectral Hue Space for Retrieving River Depth with Optical Imagery and In Situ Calibration Data10.3390/rs132144352072-4292https://doaj.org/article/fd6b61279cdc4b9693cc3cfeca3d3bbc2021-11-01T00:00:00Zhttps://www.mdpi.com/2072-4292/13/21/4435https://doaj.org/toc/2072-4292Bathymetry is a key element in the modeling of river systems for flood mapping, geomorphology, or stream habitat characterization. Standard practices rely on the interpolation of in situ depth measurements obtained with differential GPS or total station surveys, while more advanced techniques involve bathymetric LiDAR or acoustic soundings. However, these high-resolution active techniques are not so easily applied over large areas. Alternative methods using passive optical imagery present an interesting trade-off: they rely on the fact that wavelengths composing solar radiation are not attenuated at the same rates in water. Under certain assumptions, the logarithm of the ratio of radiances in two spectral bands is linearly correlated with depth. In this study, we go beyond these ratio methods in defining a multispectral hue that retains all spectral information. Given <i>n</i> coregistered bands, this spectral invariant lies on the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-sphere embedded in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>, denoted <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">S</mi><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula> and tagged ‘hue hypersphere’. It can be seen as a generalization of the RGB ‘color wheel’ (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">S</mi><mn>1</mn></msup></semantics></math></inline-formula>) in higher dimensions. We use this mapping to identify a hue-depth relation in a 35 km reach of the Garonne River, using high resolution (0.50 m) airborne imagery in four bands and data from 120 surveyed cross-sections. The distribution of multispectral hue over river pixels is modeled as a mixture of two components: one component represents the distribution of substrate hue, while the other represents the distribution of ‘deep water’ hue; parameters are fitted such that membership probability for the ‘deep’ component correlates with depth.Nicolas Le MoineMounir MahdadeMDPI AGarticlebathymetrydepthriversmultispectral huespectral invariantdirectional statisticsScienceQENRemote Sensing, Vol 13, Iss 4435, p 4435 (2021)
institution DOAJ
collection DOAJ
language EN
topic bathymetry
depth
rivers
multispectral hue
spectral invariant
directional statistics
Science
Q
spellingShingle bathymetry
depth
rivers
multispectral hue
spectral invariant
directional statistics
Science
Q
Nicolas Le Moine
Mounir Mahdade
A Preliminary Assessment of a Newly-Defined Multispectral Hue Space for Retrieving River Depth with Optical Imagery and In Situ Calibration Data
description Bathymetry is a key element in the modeling of river systems for flood mapping, geomorphology, or stream habitat characterization. Standard practices rely on the interpolation of in situ depth measurements obtained with differential GPS or total station surveys, while more advanced techniques involve bathymetric LiDAR or acoustic soundings. However, these high-resolution active techniques are not so easily applied over large areas. Alternative methods using passive optical imagery present an interesting trade-off: they rely on the fact that wavelengths composing solar radiation are not attenuated at the same rates in water. Under certain assumptions, the logarithm of the ratio of radiances in two spectral bands is linearly correlated with depth. In this study, we go beyond these ratio methods in defining a multispectral hue that retains all spectral information. Given <i>n</i> coregistered bands, this spectral invariant lies on the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-sphere embedded in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>, denoted <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">S</mi><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula> and tagged ‘hue hypersphere’. It can be seen as a generalization of the RGB ‘color wheel’ (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">S</mi><mn>1</mn></msup></semantics></math></inline-formula>) in higher dimensions. We use this mapping to identify a hue-depth relation in a 35 km reach of the Garonne River, using high resolution (0.50 m) airborne imagery in four bands and data from 120 surveyed cross-sections. The distribution of multispectral hue over river pixels is modeled as a mixture of two components: one component represents the distribution of substrate hue, while the other represents the distribution of ‘deep water’ hue; parameters are fitted such that membership probability for the ‘deep’ component correlates with depth.
format article
author Nicolas Le Moine
Mounir Mahdade
author_facet Nicolas Le Moine
Mounir Mahdade
author_sort Nicolas Le Moine
title A Preliminary Assessment of a Newly-Defined Multispectral Hue Space for Retrieving River Depth with Optical Imagery and In Situ Calibration Data
title_short A Preliminary Assessment of a Newly-Defined Multispectral Hue Space for Retrieving River Depth with Optical Imagery and In Situ Calibration Data
title_full A Preliminary Assessment of a Newly-Defined Multispectral Hue Space for Retrieving River Depth with Optical Imagery and In Situ Calibration Data
title_fullStr A Preliminary Assessment of a Newly-Defined Multispectral Hue Space for Retrieving River Depth with Optical Imagery and In Situ Calibration Data
title_full_unstemmed A Preliminary Assessment of a Newly-Defined Multispectral Hue Space for Retrieving River Depth with Optical Imagery and In Situ Calibration Data
title_sort preliminary assessment of a newly-defined multispectral hue space for retrieving river depth with optical imagery and in situ calibration data
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/fd6b61279cdc4b9693cc3cfeca3d3bbc
work_keys_str_mv AT nicolaslemoine apreliminaryassessmentofanewlydefinedmultispectralhuespaceforretrievingriverdepthwithopticalimageryandinsitucalibrationdata
AT mounirmahdade apreliminaryassessmentofanewlydefinedmultispectralhuespaceforretrievingriverdepthwithopticalimageryandinsitucalibrationdata
AT nicolaslemoine preliminaryassessmentofanewlydefinedmultispectralhuespaceforretrievingriverdepthwithopticalimageryandinsitucalibrationdata
AT mounirmahdade preliminaryassessmentofanewlydefinedmultispectralhuespaceforretrievingriverdepthwithopticalimageryandinsitucalibrationdata
_version_ 1718431682557640704