A Hodge-type decomposition of holomorphic Poisson cohomology on nilmanifolds

A cohomology theory associated to a holomorphic Poisson structure is the hypercohomology of a bicomplex where one of the two operators is the classical მ̄-operator, while the other operator is the adjoint action of the Poisson bivector with respect to the Schouten-Nijenhuis bracket. The first page o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Poon Yat Sun, Simanyi John
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2017
Materias:
Acceso en línea:https://doaj.org/article/fd70e3e315f543cebff44d90f4a8db35
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:fd70e3e315f543cebff44d90f4a8db35
record_format dspace
spelling oai:doaj.org-article:fd70e3e315f543cebff44d90f4a8db352021-12-02T16:36:59ZA Hodge-type decomposition of holomorphic Poisson cohomology on nilmanifolds2300-744310.1515/coma-2017-0009https://doaj.org/article/fd70e3e315f543cebff44d90f4a8db352017-02-01T00:00:00Zhttps://doi.org/10.1515/coma-2017-0009https://doaj.org/toc/2300-7443A cohomology theory associated to a holomorphic Poisson structure is the hypercohomology of a bicomplex where one of the two operators is the classical მ̄-operator, while the other operator is the adjoint action of the Poisson bivector with respect to the Schouten-Nijenhuis bracket. The first page of the associated spectral sequence is the Dolbeault cohomology with coefficients in the sheaf of germs of holomorphic polyvector fields. In this note, the authors investigate the conditions for which this spectral sequence degenerates on the first page when the underlying complex manifolds are nilmanifolds with an abelian complex structure. For a particular class of holomorphic Poisson structures, this result leads to a Hodge-type decomposition of the holomorphic Poisson cohomology. We provide examples when the nilmanifolds are 2-step.Poon Yat SunSimanyi JohnDe Gruyterarticleholomorphic poissoncohomologyhodge theorynilmanifolds53d1853d1732g2018g4014d07MathematicsQA1-939ENComplex Manifolds, Vol 4, Iss 1, Pp 137-154 (2017)
institution DOAJ
collection DOAJ
language EN
topic holomorphic poisson
cohomology
hodge theory
nilmanifolds
53d18
53d17
32g20
18g40
14d07
Mathematics
QA1-939
spellingShingle holomorphic poisson
cohomology
hodge theory
nilmanifolds
53d18
53d17
32g20
18g40
14d07
Mathematics
QA1-939
Poon Yat Sun
Simanyi John
A Hodge-type decomposition of holomorphic Poisson cohomology on nilmanifolds
description A cohomology theory associated to a holomorphic Poisson structure is the hypercohomology of a bicomplex where one of the two operators is the classical მ̄-operator, while the other operator is the adjoint action of the Poisson bivector with respect to the Schouten-Nijenhuis bracket. The first page of the associated spectral sequence is the Dolbeault cohomology with coefficients in the sheaf of germs of holomorphic polyvector fields. In this note, the authors investigate the conditions for which this spectral sequence degenerates on the first page when the underlying complex manifolds are nilmanifolds with an abelian complex structure. For a particular class of holomorphic Poisson structures, this result leads to a Hodge-type decomposition of the holomorphic Poisson cohomology. We provide examples when the nilmanifolds are 2-step.
format article
author Poon Yat Sun
Simanyi John
author_facet Poon Yat Sun
Simanyi John
author_sort Poon Yat Sun
title A Hodge-type decomposition of holomorphic Poisson cohomology on nilmanifolds
title_short A Hodge-type decomposition of holomorphic Poisson cohomology on nilmanifolds
title_full A Hodge-type decomposition of holomorphic Poisson cohomology on nilmanifolds
title_fullStr A Hodge-type decomposition of holomorphic Poisson cohomology on nilmanifolds
title_full_unstemmed A Hodge-type decomposition of holomorphic Poisson cohomology on nilmanifolds
title_sort hodge-type decomposition of holomorphic poisson cohomology on nilmanifolds
publisher De Gruyter
publishDate 2017
url https://doaj.org/article/fd70e3e315f543cebff44d90f4a8db35
work_keys_str_mv AT poonyatsun ahodgetypedecompositionofholomorphicpoissoncohomologyonnilmanifolds
AT simanyijohn ahodgetypedecompositionofholomorphicpoissoncohomologyonnilmanifolds
AT poonyatsun hodgetypedecompositionofholomorphicpoissoncohomologyonnilmanifolds
AT simanyijohn hodgetypedecompositionofholomorphicpoissoncohomologyonnilmanifolds
_version_ 1718383671036084224