Potential Biomarkers for Predicting Depression in Diabetes Mellitus
Objective: To identify the potential biomarkers for predicting depression in diabetes mellitus using support vector machine to analyze routine biochemical tests and vital signs between two groups: subjects with both diabetes mellitus and depression, and subjects with diabetes mellitus alone.Methods:...
Guardado en:
Autores principales: | Xiuli Song, Qiang Zheng, Rui Zhang, Miye Wang, Wei Deng, Qiang Wang, Wanjun Guo, Tao Li, Xiaohong Ma |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fd72b1817b4b4162b8b759939b47cdf5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Identification of blood-derived candidate gene markers and a new 7-gene diagnostic model for multiple sclerosis
por: Chen,Xin, et al.
Publicado: (2021) -
Abnormal Fractional Amplitude of Low-Frequency Fluctuation as a Potential Imaging Biomarker for First-Episode Major Depressive Disorder: A Resting-State fMRI Study and Support Vector Machine Analysis
por: Yujun Gao, et al.
Publicado: (2021) -
Spectropathology-corroborated multimodal quantitative imaging biomarkers for neuroretinal degeneration in diabetic retinopathy
por: Guha Mazumder A, et al.
Publicado: (2017) -
Design and analysis of quantum powered support vector machines for malignant breast cancer diagnosis
por: Vashisth Shubham, et al.
Publicado: (2021) -
EEG-Based Classification of the Driver Alertness State
por: Golz Martin, et al.
Publicado: (2020)