Survival prognostic factors in patients with acute myeloid leukemia using machine learning techniques.
This paper identifies prognosis factors for survival in patients with acute myeloid leukemia (AML) using machine learning techniques. We have integrated machine learning with feature selection methods and have compared their performances to identify the most suitable factors in assessing the surviva...
Guardado en:
Autores principales: | Keyvan Karami, Mahboubeh Akbari, Mohammad-Taher Moradi, Bijan Soleymani, Hossein Fallahi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fd77825e3e4741b6aa5d9b0b2418aa8a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
SCAMP2/5 as diagnostic and prognostic markers for acute myeloid leukemia
por: Can Yue, et al.
Publicado: (2021) -
Role of new Immunophenotypic Markers on Prognostic and Overall Survival of Acute Myeloid Leukemia: a Systematic Review and Meta-Analysis
por: A. F. O. Costa, et al.
Publicado: (2017) -
Development of a poor-prognostic-mutations derived immune prognostic model for acute myeloid leukemia
por: Feng-Ting Dao, et al.
Publicado: (2021) -
Conventional Cytogenetic and Molecular Analysis in Acute Myeloid Leukemia (AML) and Their Association with Overall Survival
por: Shakeri S., et al.
Publicado: (2021) -
Circular RNAs in acute myeloid leukemia
por: Vijendra Singh, et al.
Publicado: (2021)