Removal of Basic Orange 2 dye and Ni2+ from aqueous solutions using alkaline-modified nanoclay
In the present research, the removal of Basic Orange 2 (BO2) dye using alkaline-modified clay nanoparticles was studied. To characterize the adsorbent, XRD, FTIR, FESEM, EDX, BET and BJH analyses were performed. The effect of the variables influencing the dye adsorption process such as adsorbent dos...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IWA Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fd8937bedd0f410c9d646fbe7c5bb369 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:fd8937bedd0f410c9d646fbe7c5bb369 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:fd8937bedd0f410c9d646fbe7c5bb3692021-11-06T11:01:57ZRemoval of Basic Orange 2 dye and Ni2+ from aqueous solutions using alkaline-modified nanoclay0273-12231996-973210.2166/wst.2021.121https://doaj.org/article/fd8937bedd0f410c9d646fbe7c5bb3692021-05-01T00:00:00Zhttp://wst.iwaponline.com/content/83/9/2271https://doaj.org/toc/0273-1223https://doaj.org/toc/1996-9732In the present research, the removal of Basic Orange 2 (BO2) dye using alkaline-modified clay nanoparticles was studied. To characterize the adsorbent, XRD, FTIR, FESEM, EDX, BET and BJH analyses were performed. The effect of the variables influencing the dye adsorption process such as adsorbent dose, contact time, pH, stirring rate, temperature, and initial dye concentration was investigated. Furthermore, the high efficiency of Ni2+ removal indicated that it is possible to remove both dye and metal cation under the same optimum conditions. The experimental data were analyzed by Langmuir and Freundlich isotherm models. Fitting the experimental data to Langmuir isotherm indicated that the monolayer adsorption of dye occurred at homogeneous sites. Experimental data were also analyzed with pseudo-first-order, pseudo-second-order, and intra-particle diffusion kinetic equations for kinetic modeling of the dye removal process. The adsorption results indicated that the process follows a pseudo-second-order kinetic model. The thermodynamic parameters of the dye adsorption process such as enthalpy, entropy, and Gibbs free energy changes were calculated and revealed that the adsorption process was spontaneous and endothermic in nature. The results presented the high potential of the modified nanoclay as a cost-effective adsorbent for the removal of BO2 dye and Ni2+ from aqueous medium. HIGHLIGHTS The decolorization kinetics of BO2 was followed by a pseudo-second-order kinetic model.; The adsorption of BO2 was spontaneous and endothermic.; The efficiency of Ni2+ removal confirmed the possibility of the removal of BO2 dye and Ni2+ simultaneously under optimum conditions.; The modified nanoclay can be a potential candidate for removing BO2 dye and Ni2+ from textile wastewater.;Armin GeroeeyanAli NiaziElaheh KonozIWA Publishingarticleadsorptionkineticsnanoclayremovalsurface modificationthermodynamicsEnvironmental technology. Sanitary engineeringTD1-1066ENWater Science and Technology, Vol 83, Iss 9, Pp 2271-2286 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
adsorption kinetics nanoclay removal surface modification thermodynamics Environmental technology. Sanitary engineering TD1-1066 |
spellingShingle |
adsorption kinetics nanoclay removal surface modification thermodynamics Environmental technology. Sanitary engineering TD1-1066 Armin Geroeeyan Ali Niazi Elaheh Konoz Removal of Basic Orange 2 dye and Ni2+ from aqueous solutions using alkaline-modified nanoclay |
description |
In the present research, the removal of Basic Orange 2 (BO2) dye using alkaline-modified clay nanoparticles was studied. To characterize the adsorbent, XRD, FTIR, FESEM, EDX, BET and BJH analyses were performed. The effect of the variables influencing the dye adsorption process such as adsorbent dose, contact time, pH, stirring rate, temperature, and initial dye concentration was investigated. Furthermore, the high efficiency of Ni2+ removal indicated that it is possible to remove both dye and metal cation under the same optimum conditions. The experimental data were analyzed by Langmuir and Freundlich isotherm models. Fitting the experimental data to Langmuir isotherm indicated that the monolayer adsorption of dye occurred at homogeneous sites. Experimental data were also analyzed with pseudo-first-order, pseudo-second-order, and intra-particle diffusion kinetic equations for kinetic modeling of the dye removal process. The adsorption results indicated that the process follows a pseudo-second-order kinetic model. The thermodynamic parameters of the dye adsorption process such as enthalpy, entropy, and Gibbs free energy changes were calculated and revealed that the adsorption process was spontaneous and endothermic in nature. The results presented the high potential of the modified nanoclay as a cost-effective adsorbent for the removal of BO2 dye and Ni2+ from aqueous medium. HIGHLIGHTS
The decolorization kinetics of BO2 was followed by a pseudo-second-order kinetic model.;
The adsorption of BO2 was spontaneous and endothermic.;
The efficiency of Ni2+ removal confirmed the possibility of the removal of BO2 dye and Ni2+ simultaneously under optimum conditions.;
The modified nanoclay can be a potential candidate for removing BO2 dye and Ni2+ from textile wastewater.; |
format |
article |
author |
Armin Geroeeyan Ali Niazi Elaheh Konoz |
author_facet |
Armin Geroeeyan Ali Niazi Elaheh Konoz |
author_sort |
Armin Geroeeyan |
title |
Removal of Basic Orange 2 dye and Ni2+ from aqueous solutions using alkaline-modified nanoclay |
title_short |
Removal of Basic Orange 2 dye and Ni2+ from aqueous solutions using alkaline-modified nanoclay |
title_full |
Removal of Basic Orange 2 dye and Ni2+ from aqueous solutions using alkaline-modified nanoclay |
title_fullStr |
Removal of Basic Orange 2 dye and Ni2+ from aqueous solutions using alkaline-modified nanoclay |
title_full_unstemmed |
Removal of Basic Orange 2 dye and Ni2+ from aqueous solutions using alkaline-modified nanoclay |
title_sort |
removal of basic orange 2 dye and ni2+ from aqueous solutions using alkaline-modified nanoclay |
publisher |
IWA Publishing |
publishDate |
2021 |
url |
https://doaj.org/article/fd8937bedd0f410c9d646fbe7c5bb369 |
work_keys_str_mv |
AT armingeroeeyan removalofbasicorange2dyeandni2fromaqueoussolutionsusingalkalinemodifiednanoclay AT aliniazi removalofbasicorange2dyeandni2fromaqueoussolutionsusingalkalinemodifiednanoclay AT elahehkonoz removalofbasicorange2dyeandni2fromaqueoussolutionsusingalkalinemodifiednanoclay |
_version_ |
1718443772357902336 |