Diurnal variability of stratospheric column NO<sub>2</sub> measured using direct solar and lunar spectra over Table Mountain, California (34.38°&thinsp;N)

<p>A full diurnal measurement of stratospheric column NO<span class="inline-formula"><sub>2</sub></span> has been made over the Jet Propulsion Laboratory's Table Mountain Facility (TMF) located in the mountains above Los Angeles, California, USA (2.286 km...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: K.-F. Li, R. Khoury, T. J. Pongetti, S. P. Sander, F. P. Mills, Y. L. Yung
Formato: article
Lenguaje:EN
Publicado: Copernicus Publications 2021
Materias:
Acceso en línea:https://doaj.org/article/fd8b51441fb24a7a8201ea68fc3a6f0b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:<p>A full diurnal measurement of stratospheric column NO<span class="inline-formula"><sub>2</sub></span> has been made over the Jet Propulsion Laboratory's Table Mountain Facility (TMF) located in the mountains above Los Angeles, California, USA (2.286 km above mean sea level, 34.38<span class="inline-formula"><sup>∘</sup></span> N, 117.68<span class="inline-formula"><sup>∘</sup></span> W). During a representative week in October 2018, a grating spectrometer measured the telluric NO<span class="inline-formula"><sub>2</sub></span> absorptions in direct solar and lunar spectra. The stratospheric column NO<span class="inline-formula"><sub>2</sub></span> is retrieved using a modified minimum-amount Langley extrapolation, which enables us to accurately treat the non-constant NO<span class="inline-formula"><sub>2</sub></span> diurnal cycle abundance and the effects of tropospheric pollution near the measurement site. The measured 24 h cycle of stratospheric column NO<span class="inline-formula"><sub>2</sub></span> on clean days agrees with a 1-D photochemical model calculation, including the monotonic changes during daytime and nighttime due to the exchange with the N<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>5</sub></span> reservoir and the abrupt changes at sunrise and sunset due to the activation or deactivation of the NO<span class="inline-formula"><sub>2</sub></span> photodissociation. The observed daytime NO<span class="inline-formula"><sub>2</sub></span> increasing rate is <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>(</mo><mn mathvariant="normal">1.34</mn><mo>±</mo><mn mathvariant="normal">0.24</mn><mo>)</mo><mo>×</mo><msup><mn mathvariant="normal">10</mn><mn mathvariant="normal">14</mn></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="96pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="34a5641338ec0c60d4842678be7a7e17"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-7495-2021-ie00001.svg" width="96pt" height="15pt" src="amt-14-7495-2021-ie00001.png"/></svg:svg></span></span> cm<span class="inline-formula"><sup>−2</sup></span> h<span class="inline-formula"><sup>−1</sup></span>. The observed NO<span class="inline-formula"><sub>2</sub></span> in one of the afternoons during the measurement period was much higher than the model simulation, implying the influence of urban pollution from nearby counties. A 24 h back-trajectory analysis shows that the wind first came from inland in the northeast and reached southern Los Angeles before it turned northeast and finally arrived at TMF, allowing it to pick up pollutants from Riverside County, Orange County, and downtown Los Angeles.</p>