Thermodynamics of aryl-dihydroxyphenyl-thiadiazole binding to human Hsp90.
The design of specific inhibitors against the Hsp90 chaperone and other enzyme relies on the detailed and correct understanding of both the thermodynamics of inhibitor binding and the structural features of the protein-inhibitor complex. Here we present a detailed thermodynamic study of binding of a...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fdc06ac0a3514bc5b45020c5b1c4c9db |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:fdc06ac0a3514bc5b45020c5b1c4c9db |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:fdc06ac0a3514bc5b45020c5b1c4c9db2021-11-18T07:17:35ZThermodynamics of aryl-dihydroxyphenyl-thiadiazole binding to human Hsp90.1932-620310.1371/journal.pone.0036899https://doaj.org/article/fdc06ac0a3514bc5b45020c5b1c4c9db2012-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/22655030/pdf/?tool=EBIhttps://doaj.org/toc/1932-6203The design of specific inhibitors against the Hsp90 chaperone and other enzyme relies on the detailed and correct understanding of both the thermodynamics of inhibitor binding and the structural features of the protein-inhibitor complex. Here we present a detailed thermodynamic study of binding of aryl-dihydroxyphenyl-thiadiazole inhibitor series to recombinant human Hsp90 alpha isozyme. The inhibitors are highly potent, with the intrinsic K(d) approximately equal to 1 nM as determined by isothermal titration calorimetry (ITC) and thermal shift assay (TSA). Dissection of protonation contributions yielded the intrinsic thermodynamic parameters of binding, such as enthalpy, entropy, Gibbs free energy, and the heat capacity. The differences in binding thermodynamic parameters between the series of inhibitors revealed contributions of the functional groups, thus providing insight into molecular reasons for improved or diminished binding efficiency. The inhibitor binding to Hsp90 alpha primarily depended on a large favorable enthalpic contribution combined with the smaller favorable entropic contribution, thus suggesting that their binding was both enthalpically and entropically optimized. The enthalpy-entropy compensation phenomenon was highly evident when comparing the inhibitor binding enthalpies and entropies. This study illustrates how detailed thermodynamic analysis helps to understand energetic reasons for the binding efficiency and develop more potent inhibitors that could be applied for therapeutic use as Hsp90 inhibitors.Egidijus KazlauskasVilma PetrikaitėVilma MichailovienėJurgita RevuckienėJurgita MatulienėLeonas GriniusDaumantas MatulisPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 7, Iss 5, p e36899 (2012) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Egidijus Kazlauskas Vilma Petrikaitė Vilma Michailovienė Jurgita Revuckienė Jurgita Matulienė Leonas Grinius Daumantas Matulis Thermodynamics of aryl-dihydroxyphenyl-thiadiazole binding to human Hsp90. |
description |
The design of specific inhibitors against the Hsp90 chaperone and other enzyme relies on the detailed and correct understanding of both the thermodynamics of inhibitor binding and the structural features of the protein-inhibitor complex. Here we present a detailed thermodynamic study of binding of aryl-dihydroxyphenyl-thiadiazole inhibitor series to recombinant human Hsp90 alpha isozyme. The inhibitors are highly potent, with the intrinsic K(d) approximately equal to 1 nM as determined by isothermal titration calorimetry (ITC) and thermal shift assay (TSA). Dissection of protonation contributions yielded the intrinsic thermodynamic parameters of binding, such as enthalpy, entropy, Gibbs free energy, and the heat capacity. The differences in binding thermodynamic parameters between the series of inhibitors revealed contributions of the functional groups, thus providing insight into molecular reasons for improved or diminished binding efficiency. The inhibitor binding to Hsp90 alpha primarily depended on a large favorable enthalpic contribution combined with the smaller favorable entropic contribution, thus suggesting that their binding was both enthalpically and entropically optimized. The enthalpy-entropy compensation phenomenon was highly evident when comparing the inhibitor binding enthalpies and entropies. This study illustrates how detailed thermodynamic analysis helps to understand energetic reasons for the binding efficiency and develop more potent inhibitors that could be applied for therapeutic use as Hsp90 inhibitors. |
format |
article |
author |
Egidijus Kazlauskas Vilma Petrikaitė Vilma Michailovienė Jurgita Revuckienė Jurgita Matulienė Leonas Grinius Daumantas Matulis |
author_facet |
Egidijus Kazlauskas Vilma Petrikaitė Vilma Michailovienė Jurgita Revuckienė Jurgita Matulienė Leonas Grinius Daumantas Matulis |
author_sort |
Egidijus Kazlauskas |
title |
Thermodynamics of aryl-dihydroxyphenyl-thiadiazole binding to human Hsp90. |
title_short |
Thermodynamics of aryl-dihydroxyphenyl-thiadiazole binding to human Hsp90. |
title_full |
Thermodynamics of aryl-dihydroxyphenyl-thiadiazole binding to human Hsp90. |
title_fullStr |
Thermodynamics of aryl-dihydroxyphenyl-thiadiazole binding to human Hsp90. |
title_full_unstemmed |
Thermodynamics of aryl-dihydroxyphenyl-thiadiazole binding to human Hsp90. |
title_sort |
thermodynamics of aryl-dihydroxyphenyl-thiadiazole binding to human hsp90. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2012 |
url |
https://doaj.org/article/fdc06ac0a3514bc5b45020c5b1c4c9db |
work_keys_str_mv |
AT egidijuskazlauskas thermodynamicsofaryldihydroxyphenylthiadiazolebindingtohumanhsp90 AT vilmapetrikaite thermodynamicsofaryldihydroxyphenylthiadiazolebindingtohumanhsp90 AT vilmamichailoviene thermodynamicsofaryldihydroxyphenylthiadiazolebindingtohumanhsp90 AT jurgitarevuckiene thermodynamicsofaryldihydroxyphenylthiadiazolebindingtohumanhsp90 AT jurgitamatuliene thermodynamicsofaryldihydroxyphenylthiadiazolebindingtohumanhsp90 AT leonasgrinius thermodynamicsofaryldihydroxyphenylthiadiazolebindingtohumanhsp90 AT daumantasmatulis thermodynamicsofaryldihydroxyphenylthiadiazolebindingtohumanhsp90 |
_version_ |
1718423703291691008 |