α-Rank: Multi-Agent Evaluation by Evolution
Abstract We introduce α-Rank, a principled evolutionary dynamics methodology, for the evaluation and ranking of agents in large-scale multi-agent interactions, grounded in a novel dynamical game-theoretic solution concept called Markov-Conley chains (MCCs). The approach leverages continuous-time and...
Enregistré dans:
Auteurs principaux: | Shayegan Omidshafiei, Christos Papadimitriou, Georgios Piliouras, Karl Tuyls, Mark Rowland, Jean-Baptiste Lespiau, Wojciech M. Czarnecki, Marc Lanctot, Julien Perolat, Remi Munos |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/fdd2f745b2844cf49e6facb5a043ddfa |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Navigating the landscape of multiplayer games
par: Shayegan Omidshafiei, et autres
Publié: (2020) -
Ranks of the Divine Seekers
par: Antonia Bosanquet
Publié: (2020) -
IIMB ranking infography
Publié: (2021) -
NeuRank: learning to rank with neural networks for drug–target interaction prediction
par: Xiujin Wu, et autres
Publié: (2021) -
Ranking Meets Distance Education
par: Francesca Pozzi, et autres
Publié: (2019)