α-Rank: Multi-Agent Evaluation by Evolution
Abstract We introduce α-Rank, a principled evolutionary dynamics methodology, for the evaluation and ranking of agents in large-scale multi-agent interactions, grounded in a novel dynamical game-theoretic solution concept called Markov-Conley chains (MCCs). The approach leverages continuous-time and...
Guardado en:
Autores principales: | Shayegan Omidshafiei, Christos Papadimitriou, Georgios Piliouras, Karl Tuyls, Mark Rowland, Jean-Baptiste Lespiau, Wojciech M. Czarnecki, Marc Lanctot, Julien Perolat, Remi Munos |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fdd2f745b2844cf49e6facb5a043ddfa |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Navigating the landscape of multiplayer games
por: Shayegan Omidshafiei, et al.
Publicado: (2020) -
Ranks of the Divine Seekers
por: Antonia Bosanquet
Publicado: (2020) -
IIMB ranking infography
Publicado: (2021) -
NeuRank: learning to rank with neural networks for drug–target interaction prediction
por: Xiujin Wu, et al.
Publicado: (2021) -
Ranking Meets Distance Education
por: Francesca Pozzi, et al.
Publicado: (2019)