DPWSS: differentially private working set selection for training support vector machines
Support vector machine (SVM) is a robust machine learning method and is widely used in classification. However, the traditional SVM training methods may reveal personal privacy when the training data contains sensitive information. In the training process of SVMs, working set selection is a vital st...
Guardado en:
Autores principales: | Zhenlong Sun, Jing Yang, Xiaoye Li, Jianpei Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fdeb66e7d0c941e78d57f937dcb031d7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Differentially private partition selection
por: Desfontaines Damien, et al.
Publicado: (2022) -
Multiparty Reach and Frequency Histogram: Private, Secure, and Practical
por: Ghazi Badih, et al.
Publicado: (2022) -
KINERJA ALGORITMA SUPPORT VECTOR MACHINE BERDASARKAN EKSTRAKSI SINYAL SUARA DENGAN MEL-FREQUENCY CEPSTRUM COEFFICIENTS PADA PELAFADZAN AYAT AL-QURAN
por: Rizki Suwanda, et al.
Publicado: (2019) -
A fast vectorized sorting implementation based on the ARM scalable vector extension (SVE)
por: Bérenger Bramas
Publicado: (2021) -
ANALISA SENTIMEN TERHADAP TOKOH PUBLIK MENGGUNAKAN METODE NAÏVE BAYES CLASSIFIER DAN SUPPORT VECTOR MACHINE
por: Deni Rusdiaman, et al.
Publicado: (2019)