DPWSS: differentially private working set selection for training support vector machines
Support vector machine (SVM) is a robust machine learning method and is widely used in classification. However, the traditional SVM training methods may reveal personal privacy when the training data contains sensitive information. In the training process of SVMs, working set selection is a vital st...
Enregistré dans:
Auteurs principaux: | Zhenlong Sun, Jing Yang, Xiaoye Li, Jianpei Zhang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
PeerJ Inc.
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/fdeb66e7d0c941e78d57f937dcb031d7 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Differentially private partition selection
par: Desfontaines Damien, et autres
Publié: (2022) -
Multiparty Reach and Frequency Histogram: Private, Secure, and Practical
par: Ghazi Badih, et autres
Publié: (2022) -
KINERJA ALGORITMA SUPPORT VECTOR MACHINE BERDASARKAN EKSTRAKSI SINYAL SUARA DENGAN MEL-FREQUENCY CEPSTRUM COEFFICIENTS PADA PELAFADZAN AYAT AL-QURAN
par: Rizki Suwanda, et autres
Publié: (2019) -
A fast vectorized sorting implementation based on the ARM scalable vector extension (SVE)
par: Bérenger Bramas
Publié: (2021) -
ANALISA SENTIMEN TERHADAP TOKOH PUBLIK MENGGUNAKAN METODE NAÏVE BAYES CLASSIFIER DAN SUPPORT VECTOR MACHINE
par: Deni Rusdiaman, et autres
Publié: (2019)