Autonomously revealing hidden local structures in supercooled liquids

The origin of dynamical slowdown in disordered materials remains elusive, especially in the absence of obvious structural changes. Boattini et al. use unsupervised machine learning to reveal correlations between structural and dynamical heterogeneity in supercooled liquids.

Guardado en:
Detalles Bibliográficos
Autores principales: Emanuele Boattini, Susana Marín-Aguilar, Saheli Mitra, Giuseppe Foffi, Frank Smallenburg, Laura Filion
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/fe002f9f60f94c47b33d4f89d83e76fb
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The origin of dynamical slowdown in disordered materials remains elusive, especially in the absence of obvious structural changes. Boattini et al. use unsupervised machine learning to reveal correlations between structural and dynamical heterogeneity in supercooled liquids.