Autonomously revealing hidden local structures in supercooled liquids
The origin of dynamical slowdown in disordered materials remains elusive, especially in the absence of obvious structural changes. Boattini et al. use unsupervised machine learning to reveal correlations between structural and dynamical heterogeneity in supercooled liquids.
Enregistré dans:
Auteurs principaux: | Emanuele Boattini, Susana Marín-Aguilar, Saheli Mitra, Giuseppe Foffi, Frank Smallenburg, Laura Filion |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/fe002f9f60f94c47b33d4f89d83e76fb |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Hidden amorphous phase and reentrant supercooled liquid in Pd-Ni-P metallic glasses
par: S. Lan, et autres
Publié: (2017) -
Local structure in deeply supercooled liquids exhibits growing lengthscales and dynamical correlations
par: James E. Hallett, et autres
Publié: (2018) -
Computing the viscosity of supercooled liquids: Markov Network model.
par: Ju Li, et autres
Publié: (2011) -
Experimental evidence of mosaic structure in strongly supercooled molecular liquids
par: F. Caporaletti, et autres
Publié: (2021) -
Pressure Induced Liquid-to-Liquid Transition in Zr-based Supercooled Melts and Pressure Quenched Glasses
par: W. Dmowski, et autres
Publié: (2017)