Emergent Replica Conformal Symmetry in Non-Hermitian SYK$_2$ Chains

Recently, the steady states of non-unitary free fermion dynamics are found to exhibit novel critical phases with power-law squared correlations and a logarithmic subsystem entanglement. In this work, we theoretically understand the underlying physics by constructing solvable static/Brownian quadrati...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Pengfei Zhang, Shao-Kai Jian, Chunxiao Liu, Xiao Chen
Formato: article
Lenguaje:EN
Publicado: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften 2021
Materias:
Acceso en línea:https://doaj.org/article/fe00f8683fad4b4fb9cfb6bb7b28207f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Recently, the steady states of non-unitary free fermion dynamics are found to exhibit novel critical phases with power-law squared correlations and a logarithmic subsystem entanglement. In this work, we theoretically understand the underlying physics by constructing solvable static/Brownian quadratic Sachdev-Ye-Kitaev chains with non-Hermitian dynamics. We find the action of the replicated system generally shows (one or infinite copies of) ${O(2)\times O(2)}$ symmetries, which is broken to ${O(2)}$ by the saddle-point solution. This leads to an emergent conformal field theory of the Goldstone modes. We derive the effective action and obtain the universal critical behaviors of squared correlators. Furthermore, the entanglement entropy of a subsystem ${A}$ with length ${L_A}$ corresponds to the energy of the half-vortex pair ${S\sim \rho_s \log L_A}$, where ${\rho_s}$ is the total stiffness of the Goldstone modes. We also discuss special limits with more than one branch of Goldstone modes and comment on interaction effects.