Growth, secondary metabolite production, and in vitro antiplasmodial activity of Sonchus arvensis L. callus under dolomite [CaMg(CO3)2] treatment.
Malaria is still a global health problem. Plasmodium is a single-cell protozoan parasite that causes malaria and is transmitted to humans through the female Anopheles mosquito. The previous study showed that Sonchus arvensis L. callus has antiplasmodial activity. Several treatments are needed for ca...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fe232ff3c1ea4373adb4fa41b58059cb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:fe232ff3c1ea4373adb4fa41b58059cb |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:fe232ff3c1ea4373adb4fa41b58059cb2021-12-02T20:17:42ZGrowth, secondary metabolite production, and in vitro antiplasmodial activity of Sonchus arvensis L. callus under dolomite [CaMg(CO3)2] treatment.1932-620310.1371/journal.pone.0254804https://doaj.org/article/fe232ff3c1ea4373adb4fa41b58059cb2021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0254804https://doaj.org/toc/1932-6203Malaria is still a global health problem. Plasmodium is a single-cell protozoan parasite that causes malaria and is transmitted to humans through the female Anopheles mosquito. The previous study showed that Sonchus arvensis L. callus has antiplasmodial activity. Several treatments are needed for callus quality improvement for antimalarial compound production. This study aimed to examine the effect of dolomite [CaMg(CO3)2] on growth (morpho-anatomical structure and biomass), secondary metabolite production, and in vitro antiplasmodial activity of S. arvensis L. callus. In this study, leaf explants were grown in Murashige and Skoog medium with a combination of 2,4-dichlorophenoxyacetic acid (2,4-D, one mg/L) and 6-benzyl amino purine (BAP, 0.5 mg/L) with dolomite (50, 75, 100, 150, and 200 mg/L). The 21 days callus ethanolic and methanolic extract were analyzed by gas chromatography-mass spectrometry (GC-MS) and thin-layer chromatography (TLC). The antiplasmodial test was performed on a blood culture infected with Plasmodium falciparum strain 3D7 using the Rieckmann method. The results showed that dolomite significantly affected callus growth, metabolite profile, and in vitro antiplasmodial activity. Dolomite (150 mg/L) showed the highest biomass (0.590 ± 0.136 g fresh weight and 0.074 ± 0.008 g dry weight). GC-MS analysis detected four compounds from callus ethanolic extract. Pelargonic acid, decanoic acid, and hexadecanoic acid were major compounds. One new terpenoid compound is based on TLC analysis. S. arvensis L. callus has antiplasmodial activity with the IC50 value of 5.037 μg/mL. It was three times lower than leaf methanolic extract and five times lower than leaf ethanolic extract.Dwi Kusuma WahyuniShilfiana RahayuAndi Hamim ZaidanWiwied EkasariSehanat PrasongsukHery PurnobasukiPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 8, p e0254804 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Dwi Kusuma Wahyuni Shilfiana Rahayu Andi Hamim Zaidan Wiwied Ekasari Sehanat Prasongsuk Hery Purnobasuki Growth, secondary metabolite production, and in vitro antiplasmodial activity of Sonchus arvensis L. callus under dolomite [CaMg(CO3)2] treatment. |
description |
Malaria is still a global health problem. Plasmodium is a single-cell protozoan parasite that causes malaria and is transmitted to humans through the female Anopheles mosquito. The previous study showed that Sonchus arvensis L. callus has antiplasmodial activity. Several treatments are needed for callus quality improvement for antimalarial compound production. This study aimed to examine the effect of dolomite [CaMg(CO3)2] on growth (morpho-anatomical structure and biomass), secondary metabolite production, and in vitro antiplasmodial activity of S. arvensis L. callus. In this study, leaf explants were grown in Murashige and Skoog medium with a combination of 2,4-dichlorophenoxyacetic acid (2,4-D, one mg/L) and 6-benzyl amino purine (BAP, 0.5 mg/L) with dolomite (50, 75, 100, 150, and 200 mg/L). The 21 days callus ethanolic and methanolic extract were analyzed by gas chromatography-mass spectrometry (GC-MS) and thin-layer chromatography (TLC). The antiplasmodial test was performed on a blood culture infected with Plasmodium falciparum strain 3D7 using the Rieckmann method. The results showed that dolomite significantly affected callus growth, metabolite profile, and in vitro antiplasmodial activity. Dolomite (150 mg/L) showed the highest biomass (0.590 ± 0.136 g fresh weight and 0.074 ± 0.008 g dry weight). GC-MS analysis detected four compounds from callus ethanolic extract. Pelargonic acid, decanoic acid, and hexadecanoic acid were major compounds. One new terpenoid compound is based on TLC analysis. S. arvensis L. callus has antiplasmodial activity with the IC50 value of 5.037 μg/mL. It was three times lower than leaf methanolic extract and five times lower than leaf ethanolic extract. |
format |
article |
author |
Dwi Kusuma Wahyuni Shilfiana Rahayu Andi Hamim Zaidan Wiwied Ekasari Sehanat Prasongsuk Hery Purnobasuki |
author_facet |
Dwi Kusuma Wahyuni Shilfiana Rahayu Andi Hamim Zaidan Wiwied Ekasari Sehanat Prasongsuk Hery Purnobasuki |
author_sort |
Dwi Kusuma Wahyuni |
title |
Growth, secondary metabolite production, and in vitro antiplasmodial activity of Sonchus arvensis L. callus under dolomite [CaMg(CO3)2] treatment. |
title_short |
Growth, secondary metabolite production, and in vitro antiplasmodial activity of Sonchus arvensis L. callus under dolomite [CaMg(CO3)2] treatment. |
title_full |
Growth, secondary metabolite production, and in vitro antiplasmodial activity of Sonchus arvensis L. callus under dolomite [CaMg(CO3)2] treatment. |
title_fullStr |
Growth, secondary metabolite production, and in vitro antiplasmodial activity of Sonchus arvensis L. callus under dolomite [CaMg(CO3)2] treatment. |
title_full_unstemmed |
Growth, secondary metabolite production, and in vitro antiplasmodial activity of Sonchus arvensis L. callus under dolomite [CaMg(CO3)2] treatment. |
title_sort |
growth, secondary metabolite production, and in vitro antiplasmodial activity of sonchus arvensis l. callus under dolomite [camg(co3)2] treatment. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2021 |
url |
https://doaj.org/article/fe232ff3c1ea4373adb4fa41b58059cb |
work_keys_str_mv |
AT dwikusumawahyuni growthsecondarymetaboliteproductionandinvitroantiplasmodialactivityofsonchusarvensislcallusunderdolomitecamgco32treatment AT shilfianarahayu growthsecondarymetaboliteproductionandinvitroantiplasmodialactivityofsonchusarvensislcallusunderdolomitecamgco32treatment AT andihamimzaidan growthsecondarymetaboliteproductionandinvitroantiplasmodialactivityofsonchusarvensislcallusunderdolomitecamgco32treatment AT wiwiedekasari growthsecondarymetaboliteproductionandinvitroantiplasmodialactivityofsonchusarvensislcallusunderdolomitecamgco32treatment AT sehanatprasongsuk growthsecondarymetaboliteproductionandinvitroantiplasmodialactivityofsonchusarvensislcallusunderdolomitecamgco32treatment AT herypurnobasuki growthsecondarymetaboliteproductionandinvitroantiplasmodialactivityofsonchusarvensislcallusunderdolomitecamgco32treatment |
_version_ |
1718374384113025024 |