Plate-nanolattices at the theoretical limit of stiffness and strength

Plate-lattices are predicted to reach the upper bounds of strength and stiffness compared to traditional beam-lattices, but they are difficult to manufacture. Here, the authors use two-photon polymerization 3D-printing and pyrolysis to make carbon plate-nanolattices which reach those theoretical bou...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cameron Crook, Jens Bauer, Anna Guell Izard, Cristine Santos de Oliveira, Juliana Martins de Souza e Silva, Jonathan B. Berger, Lorenzo Valdevit
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/fe25952c663a430b9cb8b64b789aa41b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:fe25952c663a430b9cb8b64b789aa41b
record_format dspace
spelling oai:doaj.org-article:fe25952c663a430b9cb8b64b789aa41b2021-12-02T14:42:30ZPlate-nanolattices at the theoretical limit of stiffness and strength10.1038/s41467-020-15434-22041-1723https://doaj.org/article/fe25952c663a430b9cb8b64b789aa41b2020-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-15434-2https://doaj.org/toc/2041-1723Plate-lattices are predicted to reach the upper bounds of strength and stiffness compared to traditional beam-lattices, but they are difficult to manufacture. Here, the authors use two-photon polymerization 3D-printing and pyrolysis to make carbon plate-nanolattices which reach those theoretical bounds, making them up to 639% stronger than beam-nanolattices.Cameron CrookJens BauerAnna Guell IzardCristine Santos de OliveiraJuliana Martins de Souza e SilvaJonathan B. BergerLorenzo ValdevitNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-11 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Cameron Crook
Jens Bauer
Anna Guell Izard
Cristine Santos de Oliveira
Juliana Martins de Souza e Silva
Jonathan B. Berger
Lorenzo Valdevit
Plate-nanolattices at the theoretical limit of stiffness and strength
description Plate-lattices are predicted to reach the upper bounds of strength and stiffness compared to traditional beam-lattices, but they are difficult to manufacture. Here, the authors use two-photon polymerization 3D-printing and pyrolysis to make carbon plate-nanolattices which reach those theoretical bounds, making them up to 639% stronger than beam-nanolattices.
format article
author Cameron Crook
Jens Bauer
Anna Guell Izard
Cristine Santos de Oliveira
Juliana Martins de Souza e Silva
Jonathan B. Berger
Lorenzo Valdevit
author_facet Cameron Crook
Jens Bauer
Anna Guell Izard
Cristine Santos de Oliveira
Juliana Martins de Souza e Silva
Jonathan B. Berger
Lorenzo Valdevit
author_sort Cameron Crook
title Plate-nanolattices at the theoretical limit of stiffness and strength
title_short Plate-nanolattices at the theoretical limit of stiffness and strength
title_full Plate-nanolattices at the theoretical limit of stiffness and strength
title_fullStr Plate-nanolattices at the theoretical limit of stiffness and strength
title_full_unstemmed Plate-nanolattices at the theoretical limit of stiffness and strength
title_sort plate-nanolattices at the theoretical limit of stiffness and strength
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/fe25952c663a430b9cb8b64b789aa41b
work_keys_str_mv AT cameroncrook platenanolatticesatthetheoreticallimitofstiffnessandstrength
AT jensbauer platenanolatticesatthetheoreticallimitofstiffnessandstrength
AT annaguellizard platenanolatticesatthetheoreticallimitofstiffnessandstrength
AT cristinesantosdeoliveira platenanolatticesatthetheoreticallimitofstiffnessandstrength
AT julianamartinsdesouzaesilva platenanolatticesatthetheoreticallimitofstiffnessandstrength
AT jonathanbberger platenanolatticesatthetheoreticallimitofstiffnessandstrength
AT lorenzovaldevit platenanolatticesatthetheoreticallimitofstiffnessandstrength
_version_ 1718389669353226240