Plate-nanolattices at the theoretical limit of stiffness and strength
Plate-lattices are predicted to reach the upper bounds of strength and stiffness compared to traditional beam-lattices, but they are difficult to manufacture. Here, the authors use two-photon polymerization 3D-printing and pyrolysis to make carbon plate-nanolattices which reach those theoretical bou...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fe25952c663a430b9cb8b64b789aa41b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:fe25952c663a430b9cb8b64b789aa41b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:fe25952c663a430b9cb8b64b789aa41b2021-12-02T14:42:30ZPlate-nanolattices at the theoretical limit of stiffness and strength10.1038/s41467-020-15434-22041-1723https://doaj.org/article/fe25952c663a430b9cb8b64b789aa41b2020-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-15434-2https://doaj.org/toc/2041-1723Plate-lattices are predicted to reach the upper bounds of strength and stiffness compared to traditional beam-lattices, but they are difficult to manufacture. Here, the authors use two-photon polymerization 3D-printing and pyrolysis to make carbon plate-nanolattices which reach those theoretical bounds, making them up to 639% stronger than beam-nanolattices.Cameron CrookJens BauerAnna Guell IzardCristine Santos de OliveiraJuliana Martins de Souza e SilvaJonathan B. BergerLorenzo ValdevitNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-11 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Cameron Crook Jens Bauer Anna Guell Izard Cristine Santos de Oliveira Juliana Martins de Souza e Silva Jonathan B. Berger Lorenzo Valdevit Plate-nanolattices at the theoretical limit of stiffness and strength |
description |
Plate-lattices are predicted to reach the upper bounds of strength and stiffness compared to traditional beam-lattices, but they are difficult to manufacture. Here, the authors use two-photon polymerization 3D-printing and pyrolysis to make carbon plate-nanolattices which reach those theoretical bounds, making them up to 639% stronger than beam-nanolattices. |
format |
article |
author |
Cameron Crook Jens Bauer Anna Guell Izard Cristine Santos de Oliveira Juliana Martins de Souza e Silva Jonathan B. Berger Lorenzo Valdevit |
author_facet |
Cameron Crook Jens Bauer Anna Guell Izard Cristine Santos de Oliveira Juliana Martins de Souza e Silva Jonathan B. Berger Lorenzo Valdevit |
author_sort |
Cameron Crook |
title |
Plate-nanolattices at the theoretical limit of stiffness and strength |
title_short |
Plate-nanolattices at the theoretical limit of stiffness and strength |
title_full |
Plate-nanolattices at the theoretical limit of stiffness and strength |
title_fullStr |
Plate-nanolattices at the theoretical limit of stiffness and strength |
title_full_unstemmed |
Plate-nanolattices at the theoretical limit of stiffness and strength |
title_sort |
plate-nanolattices at the theoretical limit of stiffness and strength |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/fe25952c663a430b9cb8b64b789aa41b |
work_keys_str_mv |
AT cameroncrook platenanolatticesatthetheoreticallimitofstiffnessandstrength AT jensbauer platenanolatticesatthetheoreticallimitofstiffnessandstrength AT annaguellizard platenanolatticesatthetheoreticallimitofstiffnessandstrength AT cristinesantosdeoliveira platenanolatticesatthetheoreticallimitofstiffnessandstrength AT julianamartinsdesouzaesilva platenanolatticesatthetheoreticallimitofstiffnessandstrength AT jonathanbberger platenanolatticesatthetheoreticallimitofstiffnessandstrength AT lorenzovaldevit platenanolatticesatthetheoreticallimitofstiffnessandstrength |
_version_ |
1718389669353226240 |