The Old and the New: Can Physics-Informed Deep-Learning Replace Traditional Linear Solvers?
Physics-Informed Neural Networks (PINN) are neural networks encoding the problem governing equations, such as Partial Differential Equations (PDE), as a part of the neural network. PINNs have emerged as a new essential tool to solve various challenging problems, including computing linear systems ar...
Guardado en:
Autor principal: | Stefano Markidis |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fe27750990e74469aaee567ae2e486e3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A machine learning based framework for assisting pathologists in grading and counting of breast cancer cells
por: Sreeraj M., et al.
Publicado: (2021) -
Intrusion detection for network based cloud computing by custom RC-NN and optimization
por: T. Thilagam, et al.
Publicado: (2021) -
Perancangan Sistem Informasi E-Learning pada SMAN ABC
por: TB E Zaki Baihaki, et al.
Publicado: (2021) -
A DEEP AUTOENCODER-BASED REPRESENTATION FOR ARABIC TEXT CATEGORIZATION
por: Fatima-Zahra El-Alami, et al.
Publicado: (2020) -
Deepfake-Image Anti-Forensics with Adversarial Examples Attacks
por: Li Fan, et al.
Publicado: (2021)