A simplified methodology for the modeling of interfaces of elementary metals
Automated generation of reasonable atomic-level interface models, for example, at a grain boundary, is generally computationally intensive partly because of the three degrees of freedom in a rigid-body translation (RBT) of one side of the interface against the other. We propose an algorithm to obtai...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
AIP Publishing LLC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fe2f75aac10e4d938ddf403c4546eb2e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:fe2f75aac10e4d938ddf403c4546eb2e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:fe2f75aac10e4d938ddf403c4546eb2e2021-12-01T18:52:06ZA simplified methodology for the modeling of interfaces of elementary metals2158-322610.1063/5.0063715https://doaj.org/article/fe2f75aac10e4d938ddf403c4546eb2e2021-11-01T00:00:00Zhttp://dx.doi.org/10.1063/5.0063715https://doaj.org/toc/2158-3226Automated generation of reasonable atomic-level interface models, for example, at a grain boundary, is generally computationally intensive partly because of the three degrees of freedom in a rigid-body translation (RBT) of one side of the interface against the other. We propose an algorithm to obtain reasonable interface models using as few first-principles calculations as possible. The valence charge densities of two surface slabs constituting the interface are calculated using first-principles calculations. The surface charge densities are filtered with an exponential function using a parameter λ to obtain the reaction front. Models where the overlap of filtered charge densities between the two slabs takes a local maximum are adopted as initial models with desirable RBTs, which are then relaxed using first-principles calculations to obtain a reasonable interface model. The proposed algorithm successfully generated reasonable initial models for three out of three orientations in 75% of homointerfaces of body-centered cubic, face-centered cubic, and hexagonal close-packed non-magnetic elementary metals. For the Al {001} Σ5 twist grain boundary, the present algorithm also reproduced γ-surface features of RBTs showing correct displacement shift complete lattice periodicity. Further modifications and improvements to this method are expected to accelerate automated interface model generation from a previously unexplored approach.Yoyo HinumaIchigaku TakigawaMasanori KohyamaShingo TanakaAIP Publishing LLCarticlePhysicsQC1-999ENAIP Advances, Vol 11, Iss 11, Pp 115020-115020-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Physics QC1-999 |
spellingShingle |
Physics QC1-999 Yoyo Hinuma Ichigaku Takigawa Masanori Kohyama Shingo Tanaka A simplified methodology for the modeling of interfaces of elementary metals |
description |
Automated generation of reasonable atomic-level interface models, for example, at a grain boundary, is generally computationally intensive partly because of the three degrees of freedom in a rigid-body translation (RBT) of one side of the interface against the other. We propose an algorithm to obtain reasonable interface models using as few first-principles calculations as possible. The valence charge densities of two surface slabs constituting the interface are calculated using first-principles calculations. The surface charge densities are filtered with an exponential function using a parameter λ to obtain the reaction front. Models where the overlap of filtered charge densities between the two slabs takes a local maximum are adopted as initial models with desirable RBTs, which are then relaxed using first-principles calculations to obtain a reasonable interface model. The proposed algorithm successfully generated reasonable initial models for three out of three orientations in 75% of homointerfaces of body-centered cubic, face-centered cubic, and hexagonal close-packed non-magnetic elementary metals. For the Al {001} Σ5 twist grain boundary, the present algorithm also reproduced γ-surface features of RBTs showing correct displacement shift complete lattice periodicity. Further modifications and improvements to this method are expected to accelerate automated interface model generation from a previously unexplored approach. |
format |
article |
author |
Yoyo Hinuma Ichigaku Takigawa Masanori Kohyama Shingo Tanaka |
author_facet |
Yoyo Hinuma Ichigaku Takigawa Masanori Kohyama Shingo Tanaka |
author_sort |
Yoyo Hinuma |
title |
A simplified methodology for the modeling of interfaces of elementary metals |
title_short |
A simplified methodology for the modeling of interfaces of elementary metals |
title_full |
A simplified methodology for the modeling of interfaces of elementary metals |
title_fullStr |
A simplified methodology for the modeling of interfaces of elementary metals |
title_full_unstemmed |
A simplified methodology for the modeling of interfaces of elementary metals |
title_sort |
simplified methodology for the modeling of interfaces of elementary metals |
publisher |
AIP Publishing LLC |
publishDate |
2021 |
url |
https://doaj.org/article/fe2f75aac10e4d938ddf403c4546eb2e |
work_keys_str_mv |
AT yoyohinuma asimplifiedmethodologyforthemodelingofinterfacesofelementarymetals AT ichigakutakigawa asimplifiedmethodologyforthemodelingofinterfacesofelementarymetals AT masanorikohyama asimplifiedmethodologyforthemodelingofinterfacesofelementarymetals AT shingotanaka asimplifiedmethodologyforthemodelingofinterfacesofelementarymetals AT yoyohinuma simplifiedmethodologyforthemodelingofinterfacesofelementarymetals AT ichigakutakigawa simplifiedmethodologyforthemodelingofinterfacesofelementarymetals AT masanorikohyama simplifiedmethodologyforthemodelingofinterfacesofelementarymetals AT shingotanaka simplifiedmethodologyforthemodelingofinterfacesofelementarymetals |
_version_ |
1718404671375147008 |