Dead-end complex, lipid interactions and catalytic mechanism of microsomal glutathione transferase 1, an electron crystallography and mutagenesis investigation

Abstract Microsomal glutathione transferase 1 (MGST1) is a detoxification enzyme belonging to the Membrane Associated Proteins in Eicosanoid and Glutathione Metabolism (MAPEG) superfamily. Here we have used electron crystallography of two-dimensional crystals in order to determine an atomic model of...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Qie Kuang, Pasi Purhonen, Johan Ålander, Richard Svensson, Veronika Hoogland, Jens Winerdal, Linda Spahiu, Astrid Ottosson-Wadlund, Caroline Jegerschöld, Ralf Morgenstern, Hans Hebert
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/fe2feb0db1a94044957a8d5cb9db2cb5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:fe2feb0db1a94044957a8d5cb9db2cb5
record_format dspace
spelling oai:doaj.org-article:fe2feb0db1a94044957a8d5cb9db2cb52021-12-02T12:32:18ZDead-end complex, lipid interactions and catalytic mechanism of microsomal glutathione transferase 1, an electron crystallography and mutagenesis investigation10.1038/s41598-017-07912-32045-2322https://doaj.org/article/fe2feb0db1a94044957a8d5cb9db2cb52017-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-07912-3https://doaj.org/toc/2045-2322Abstract Microsomal glutathione transferase 1 (MGST1) is a detoxification enzyme belonging to the Membrane Associated Proteins in Eicosanoid and Glutathione Metabolism (MAPEG) superfamily. Here we have used electron crystallography of two-dimensional crystals in order to determine an atomic model of rat MGST1 in a lipid environment. The model comprises 123 of the 155 amino acid residues, two structured phospholipid molecules, two aliphatic chains and one glutathione (GSH) molecule. The functional unit is a homotrimer centered on the crystallographic three-fold axes of the unit cell. The GSH substrate binds in an extended conformation at the interface between two subunits of the trimer supported by new in vitro mutagenesis data. Mutation of Arginine 130 to alanine resulted in complete loss of activity consistent with a role for Arginine 130 in stabilizing the strongly nucleophilic GSH thiolate required for catalysis. Based on the new model and an electron diffraction data set from crystals soaked with trinitrobenzene, that forms a dead-end Meisenheimer complex with GSH, a difference map was calculated. The map reveals side chain movements opening a cavity that defines the second substrate site.Qie KuangPasi PurhonenJohan ÅlanderRichard SvenssonVeronika HooglandJens WinerdalLinda SpahiuAstrid Ottosson-WadlundCaroline JegerschöldRalf MorgensternHans HebertNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-10 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Qie Kuang
Pasi Purhonen
Johan Ålander
Richard Svensson
Veronika Hoogland
Jens Winerdal
Linda Spahiu
Astrid Ottosson-Wadlund
Caroline Jegerschöld
Ralf Morgenstern
Hans Hebert
Dead-end complex, lipid interactions and catalytic mechanism of microsomal glutathione transferase 1, an electron crystallography and mutagenesis investigation
description Abstract Microsomal glutathione transferase 1 (MGST1) is a detoxification enzyme belonging to the Membrane Associated Proteins in Eicosanoid and Glutathione Metabolism (MAPEG) superfamily. Here we have used electron crystallography of two-dimensional crystals in order to determine an atomic model of rat MGST1 in a lipid environment. The model comprises 123 of the 155 amino acid residues, two structured phospholipid molecules, two aliphatic chains and one glutathione (GSH) molecule. The functional unit is a homotrimer centered on the crystallographic three-fold axes of the unit cell. The GSH substrate binds in an extended conformation at the interface between two subunits of the trimer supported by new in vitro mutagenesis data. Mutation of Arginine 130 to alanine resulted in complete loss of activity consistent with a role for Arginine 130 in stabilizing the strongly nucleophilic GSH thiolate required for catalysis. Based on the new model and an electron diffraction data set from crystals soaked with trinitrobenzene, that forms a dead-end Meisenheimer complex with GSH, a difference map was calculated. The map reveals side chain movements opening a cavity that defines the second substrate site.
format article
author Qie Kuang
Pasi Purhonen
Johan Ålander
Richard Svensson
Veronika Hoogland
Jens Winerdal
Linda Spahiu
Astrid Ottosson-Wadlund
Caroline Jegerschöld
Ralf Morgenstern
Hans Hebert
author_facet Qie Kuang
Pasi Purhonen
Johan Ålander
Richard Svensson
Veronika Hoogland
Jens Winerdal
Linda Spahiu
Astrid Ottosson-Wadlund
Caroline Jegerschöld
Ralf Morgenstern
Hans Hebert
author_sort Qie Kuang
title Dead-end complex, lipid interactions and catalytic mechanism of microsomal glutathione transferase 1, an electron crystallography and mutagenesis investigation
title_short Dead-end complex, lipid interactions and catalytic mechanism of microsomal glutathione transferase 1, an electron crystallography and mutagenesis investigation
title_full Dead-end complex, lipid interactions and catalytic mechanism of microsomal glutathione transferase 1, an electron crystallography and mutagenesis investigation
title_fullStr Dead-end complex, lipid interactions and catalytic mechanism of microsomal glutathione transferase 1, an electron crystallography and mutagenesis investigation
title_full_unstemmed Dead-end complex, lipid interactions and catalytic mechanism of microsomal glutathione transferase 1, an electron crystallography and mutagenesis investigation
title_sort dead-end complex, lipid interactions and catalytic mechanism of microsomal glutathione transferase 1, an electron crystallography and mutagenesis investigation
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/fe2feb0db1a94044957a8d5cb9db2cb5
work_keys_str_mv AT qiekuang deadendcomplexlipidinteractionsandcatalyticmechanismofmicrosomalglutathionetransferase1anelectroncrystallographyandmutagenesisinvestigation
AT pasipurhonen deadendcomplexlipidinteractionsandcatalyticmechanismofmicrosomalglutathionetransferase1anelectroncrystallographyandmutagenesisinvestigation
AT johanalander deadendcomplexlipidinteractionsandcatalyticmechanismofmicrosomalglutathionetransferase1anelectroncrystallographyandmutagenesisinvestigation
AT richardsvensson deadendcomplexlipidinteractionsandcatalyticmechanismofmicrosomalglutathionetransferase1anelectroncrystallographyandmutagenesisinvestigation
AT veronikahoogland deadendcomplexlipidinteractionsandcatalyticmechanismofmicrosomalglutathionetransferase1anelectroncrystallographyandmutagenesisinvestigation
AT jenswinerdal deadendcomplexlipidinteractionsandcatalyticmechanismofmicrosomalglutathionetransferase1anelectroncrystallographyandmutagenesisinvestigation
AT lindaspahiu deadendcomplexlipidinteractionsandcatalyticmechanismofmicrosomalglutathionetransferase1anelectroncrystallographyandmutagenesisinvestigation
AT astridottossonwadlund deadendcomplexlipidinteractionsandcatalyticmechanismofmicrosomalglutathionetransferase1anelectroncrystallographyandmutagenesisinvestigation
AT carolinejegerschold deadendcomplexlipidinteractionsandcatalyticmechanismofmicrosomalglutathionetransferase1anelectroncrystallographyandmutagenesisinvestigation
AT ralfmorgenstern deadendcomplexlipidinteractionsandcatalyticmechanismofmicrosomalglutathionetransferase1anelectroncrystallographyandmutagenesisinvestigation
AT hanshebert deadendcomplexlipidinteractionsandcatalyticmechanismofmicrosomalglutathionetransferase1anelectroncrystallographyandmutagenesisinvestigation
_version_ 1718394135247847424