Dead-end complex, lipid interactions and catalytic mechanism of microsomal glutathione transferase 1, an electron crystallography and mutagenesis investigation
Abstract Microsomal glutathione transferase 1 (MGST1) is a detoxification enzyme belonging to the Membrane Associated Proteins in Eicosanoid and Glutathione Metabolism (MAPEG) superfamily. Here we have used electron crystallography of two-dimensional crystals in order to determine an atomic model of...
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fe2feb0db1a94044957a8d5cb9db2cb5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:fe2feb0db1a94044957a8d5cb9db2cb5 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:fe2feb0db1a94044957a8d5cb9db2cb52021-12-02T12:32:18ZDead-end complex, lipid interactions and catalytic mechanism of microsomal glutathione transferase 1, an electron crystallography and mutagenesis investigation10.1038/s41598-017-07912-32045-2322https://doaj.org/article/fe2feb0db1a94044957a8d5cb9db2cb52017-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-07912-3https://doaj.org/toc/2045-2322Abstract Microsomal glutathione transferase 1 (MGST1) is a detoxification enzyme belonging to the Membrane Associated Proteins in Eicosanoid and Glutathione Metabolism (MAPEG) superfamily. Here we have used electron crystallography of two-dimensional crystals in order to determine an atomic model of rat MGST1 in a lipid environment. The model comprises 123 of the 155 amino acid residues, two structured phospholipid molecules, two aliphatic chains and one glutathione (GSH) molecule. The functional unit is a homotrimer centered on the crystallographic three-fold axes of the unit cell. The GSH substrate binds in an extended conformation at the interface between two subunits of the trimer supported by new in vitro mutagenesis data. Mutation of Arginine 130 to alanine resulted in complete loss of activity consistent with a role for Arginine 130 in stabilizing the strongly nucleophilic GSH thiolate required for catalysis. Based on the new model and an electron diffraction data set from crystals soaked with trinitrobenzene, that forms a dead-end Meisenheimer complex with GSH, a difference map was calculated. The map reveals side chain movements opening a cavity that defines the second substrate site.Qie KuangPasi PurhonenJohan ÅlanderRichard SvenssonVeronika HooglandJens WinerdalLinda SpahiuAstrid Ottosson-WadlundCaroline JegerschöldRalf MorgensternHans HebertNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-10 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Qie Kuang Pasi Purhonen Johan Ålander Richard Svensson Veronika Hoogland Jens Winerdal Linda Spahiu Astrid Ottosson-Wadlund Caroline Jegerschöld Ralf Morgenstern Hans Hebert Dead-end complex, lipid interactions and catalytic mechanism of microsomal glutathione transferase 1, an electron crystallography and mutagenesis investigation |
description |
Abstract Microsomal glutathione transferase 1 (MGST1) is a detoxification enzyme belonging to the Membrane Associated Proteins in Eicosanoid and Glutathione Metabolism (MAPEG) superfamily. Here we have used electron crystallography of two-dimensional crystals in order to determine an atomic model of rat MGST1 in a lipid environment. The model comprises 123 of the 155 amino acid residues, two structured phospholipid molecules, two aliphatic chains and one glutathione (GSH) molecule. The functional unit is a homotrimer centered on the crystallographic three-fold axes of the unit cell. The GSH substrate binds in an extended conformation at the interface between two subunits of the trimer supported by new in vitro mutagenesis data. Mutation of Arginine 130 to alanine resulted in complete loss of activity consistent with a role for Arginine 130 in stabilizing the strongly nucleophilic GSH thiolate required for catalysis. Based on the new model and an electron diffraction data set from crystals soaked with trinitrobenzene, that forms a dead-end Meisenheimer complex with GSH, a difference map was calculated. The map reveals side chain movements opening a cavity that defines the second substrate site. |
format |
article |
author |
Qie Kuang Pasi Purhonen Johan Ålander Richard Svensson Veronika Hoogland Jens Winerdal Linda Spahiu Astrid Ottosson-Wadlund Caroline Jegerschöld Ralf Morgenstern Hans Hebert |
author_facet |
Qie Kuang Pasi Purhonen Johan Ålander Richard Svensson Veronika Hoogland Jens Winerdal Linda Spahiu Astrid Ottosson-Wadlund Caroline Jegerschöld Ralf Morgenstern Hans Hebert |
author_sort |
Qie Kuang |
title |
Dead-end complex, lipid interactions and catalytic mechanism of microsomal glutathione transferase 1, an electron crystallography and mutagenesis investigation |
title_short |
Dead-end complex, lipid interactions and catalytic mechanism of microsomal glutathione transferase 1, an electron crystallography and mutagenesis investigation |
title_full |
Dead-end complex, lipid interactions and catalytic mechanism of microsomal glutathione transferase 1, an electron crystallography and mutagenesis investigation |
title_fullStr |
Dead-end complex, lipid interactions and catalytic mechanism of microsomal glutathione transferase 1, an electron crystallography and mutagenesis investigation |
title_full_unstemmed |
Dead-end complex, lipid interactions and catalytic mechanism of microsomal glutathione transferase 1, an electron crystallography and mutagenesis investigation |
title_sort |
dead-end complex, lipid interactions and catalytic mechanism of microsomal glutathione transferase 1, an electron crystallography and mutagenesis investigation |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/fe2feb0db1a94044957a8d5cb9db2cb5 |
work_keys_str_mv |
AT qiekuang deadendcomplexlipidinteractionsandcatalyticmechanismofmicrosomalglutathionetransferase1anelectroncrystallographyandmutagenesisinvestigation AT pasipurhonen deadendcomplexlipidinteractionsandcatalyticmechanismofmicrosomalglutathionetransferase1anelectroncrystallographyandmutagenesisinvestigation AT johanalander deadendcomplexlipidinteractionsandcatalyticmechanismofmicrosomalglutathionetransferase1anelectroncrystallographyandmutagenesisinvestigation AT richardsvensson deadendcomplexlipidinteractionsandcatalyticmechanismofmicrosomalglutathionetransferase1anelectroncrystallographyandmutagenesisinvestigation AT veronikahoogland deadendcomplexlipidinteractionsandcatalyticmechanismofmicrosomalglutathionetransferase1anelectroncrystallographyandmutagenesisinvestigation AT jenswinerdal deadendcomplexlipidinteractionsandcatalyticmechanismofmicrosomalglutathionetransferase1anelectroncrystallographyandmutagenesisinvestigation AT lindaspahiu deadendcomplexlipidinteractionsandcatalyticmechanismofmicrosomalglutathionetransferase1anelectroncrystallographyandmutagenesisinvestigation AT astridottossonwadlund deadendcomplexlipidinteractionsandcatalyticmechanismofmicrosomalglutathionetransferase1anelectroncrystallographyandmutagenesisinvestigation AT carolinejegerschold deadendcomplexlipidinteractionsandcatalyticmechanismofmicrosomalglutathionetransferase1anelectroncrystallographyandmutagenesisinvestigation AT ralfmorgenstern deadendcomplexlipidinteractionsandcatalyticmechanismofmicrosomalglutathionetransferase1anelectroncrystallographyandmutagenesisinvestigation AT hanshebert deadendcomplexlipidinteractionsandcatalyticmechanismofmicrosomalglutathionetransferase1anelectroncrystallographyandmutagenesisinvestigation |
_version_ |
1718394135247847424 |