Electronic structure of vertically coupled quantum dot-ring heterostructures under applied electromagnetic probes. A finite-element approach

Abstract We theoretically investigate the electron and hole states in a semiconductor quantum dot-quantum ring coupled structure, inspired by the recent experimental report by Elborg and collaborators (2017). The finite element method constitutes the numerical technique used to solve the three-dimen...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: M. E. Mora-Ramos, J. A. Vinasco, D. Laroze, A. Radu, R. L. Restrepo, Christian Heyn, V. Tulupenko, Nguyen N. Hieu, Huynh V. Phuc, J. H. Ojeda, A. L. Morales, C. A. Duque
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/fe3666c71b104b12939f93f1b673997f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:fe3666c71b104b12939f93f1b673997f
record_format dspace
spelling oai:doaj.org-article:fe3666c71b104b12939f93f1b673997f2021-12-02T14:21:58ZElectronic structure of vertically coupled quantum dot-ring heterostructures under applied electromagnetic probes. A finite-element approach10.1038/s41598-021-83583-52045-2322https://doaj.org/article/fe3666c71b104b12939f93f1b673997f2021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-83583-5https://doaj.org/toc/2045-2322Abstract We theoretically investigate the electron and hole states in a semiconductor quantum dot-quantum ring coupled structure, inspired by the recent experimental report by Elborg and collaborators (2017). The finite element method constitutes the numerical technique used to solve the three-dimensional effective mass equation within the parabolic band approximation, including the effects of externally applied electric and magnetic fields. Initially, the features of conduction electron states in the proposed system appear discussed in detail, under different geometrical configurations and values of the intensity of the aforementioned electromagnetic probes. In the second part, the properties of an electron-hole pair confined within the very kind of structure reported in the reference above are investigated via a model that tries to reproduce as close as possible the developed profile. In accordance, we report on the energies of confined electron and hole, affected by the influence of an external electric field, revealing the possibility of field-induced separate spatial localization, which may result in an indirect exciton configuration. In relation with this fact, we present a preliminary analysis of such phenomenon via the calculation of the Coulomb integral.M. E. Mora-RamosJ. A. VinascoD. LarozeA. RaduR. L. RestrepoChristian HeynV. TulupenkoNguyen N. HieuHuynh V. PhucJ. H. OjedaA. L. MoralesC. A. DuqueNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-16 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
M. E. Mora-Ramos
J. A. Vinasco
D. Laroze
A. Radu
R. L. Restrepo
Christian Heyn
V. Tulupenko
Nguyen N. Hieu
Huynh V. Phuc
J. H. Ojeda
A. L. Morales
C. A. Duque
Electronic structure of vertically coupled quantum dot-ring heterostructures under applied electromagnetic probes. A finite-element approach
description Abstract We theoretically investigate the electron and hole states in a semiconductor quantum dot-quantum ring coupled structure, inspired by the recent experimental report by Elborg and collaborators (2017). The finite element method constitutes the numerical technique used to solve the three-dimensional effective mass equation within the parabolic band approximation, including the effects of externally applied electric and magnetic fields. Initially, the features of conduction electron states in the proposed system appear discussed in detail, under different geometrical configurations and values of the intensity of the aforementioned electromagnetic probes. In the second part, the properties of an electron-hole pair confined within the very kind of structure reported in the reference above are investigated via a model that tries to reproduce as close as possible the developed profile. In accordance, we report on the energies of confined electron and hole, affected by the influence of an external electric field, revealing the possibility of field-induced separate spatial localization, which may result in an indirect exciton configuration. In relation with this fact, we present a preliminary analysis of such phenomenon via the calculation of the Coulomb integral.
format article
author M. E. Mora-Ramos
J. A. Vinasco
D. Laroze
A. Radu
R. L. Restrepo
Christian Heyn
V. Tulupenko
Nguyen N. Hieu
Huynh V. Phuc
J. H. Ojeda
A. L. Morales
C. A. Duque
author_facet M. E. Mora-Ramos
J. A. Vinasco
D. Laroze
A. Radu
R. L. Restrepo
Christian Heyn
V. Tulupenko
Nguyen N. Hieu
Huynh V. Phuc
J. H. Ojeda
A. L. Morales
C. A. Duque
author_sort M. E. Mora-Ramos
title Electronic structure of vertically coupled quantum dot-ring heterostructures under applied electromagnetic probes. A finite-element approach
title_short Electronic structure of vertically coupled quantum dot-ring heterostructures under applied electromagnetic probes. A finite-element approach
title_full Electronic structure of vertically coupled quantum dot-ring heterostructures under applied electromagnetic probes. A finite-element approach
title_fullStr Electronic structure of vertically coupled quantum dot-ring heterostructures under applied electromagnetic probes. A finite-element approach
title_full_unstemmed Electronic structure of vertically coupled quantum dot-ring heterostructures under applied electromagnetic probes. A finite-element approach
title_sort electronic structure of vertically coupled quantum dot-ring heterostructures under applied electromagnetic probes. a finite-element approach
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/fe3666c71b104b12939f93f1b673997f
work_keys_str_mv AT memoraramos electronicstructureofverticallycoupledquantumdotringheterostructuresunderappliedelectromagneticprobesafiniteelementapproach
AT javinasco electronicstructureofverticallycoupledquantumdotringheterostructuresunderappliedelectromagneticprobesafiniteelementapproach
AT dlaroze electronicstructureofverticallycoupledquantumdotringheterostructuresunderappliedelectromagneticprobesafiniteelementapproach
AT aradu electronicstructureofverticallycoupledquantumdotringheterostructuresunderappliedelectromagneticprobesafiniteelementapproach
AT rlrestrepo electronicstructureofverticallycoupledquantumdotringheterostructuresunderappliedelectromagneticprobesafiniteelementapproach
AT christianheyn electronicstructureofverticallycoupledquantumdotringheterostructuresunderappliedelectromagneticprobesafiniteelementapproach
AT vtulupenko electronicstructureofverticallycoupledquantumdotringheterostructuresunderappliedelectromagneticprobesafiniteelementapproach
AT nguyennhieu electronicstructureofverticallycoupledquantumdotringheterostructuresunderappliedelectromagneticprobesafiniteelementapproach
AT huynhvphuc electronicstructureofverticallycoupledquantumdotringheterostructuresunderappliedelectromagneticprobesafiniteelementapproach
AT jhojeda electronicstructureofverticallycoupledquantumdotringheterostructuresunderappliedelectromagneticprobesafiniteelementapproach
AT almorales electronicstructureofverticallycoupledquantumdotringheterostructuresunderappliedelectromagneticprobesafiniteelementapproach
AT caduque electronicstructureofverticallycoupledquantumdotringheterostructuresunderappliedelectromagneticprobesafiniteelementapproach
_version_ 1718391525730156544