Predicting the central 10 degrees visual field in glaucoma by applying a deep learning algorithm to optical coherence tomography images
Abstract We aimed to develop a model to predict visual field (VF) in the central 10 degrees in patients with glaucoma, by training a convolutional neural network (CNN) with optical coherence tomography (OCT) images and adjusting the values with Humphrey Field Analyzer (HFA) 24–2 test. The training d...
Guardado en:
Autores principales: | Shotaro Asano, Ryo Asaoka, Hiroshi Murata, Yohei Hashimoto, Atsuya Miki, Kazuhiko Mori, Yoko Ikeda, Takashi Kanamoto, Junkichi Yamagami, Kenji Inoue |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fe4bdf1312fc4483a90537b7a7d8d096 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Short wavelength automated perimetry and standard automated perimetry in central serous chorioretinopathy
por: Han Peng Zhou, et al.
Publicado: (2020) -
Mapping glaucoma patients' 30-2 and 10-2 visual fields reveals clusters of test points damaged in the 10-2 grid that are not sampled in the sparse 30-2 grid.
por: Ryo Asaoka
Publicado: (2014) -
The association between structure-function relationships and cognitive impairment in elderly glaucoma patients
por: Megumi Honjo, et al.
Publicado: (2017) -
Visualizing the dynamic change of Ocular Response Analyzer waveform using Variational Autoencoder in association with the peripapillary retinal arteries angle
por: Shotaro Asano, et al.
Publicado: (2020) -
A case involving an Ahmed™ glaucoma valve transferred from the vitreous into the anterior chamber of the eye with a silicone oil tamponade for the treatment of neovascular glaucoma
por: Miki M, et al.
Publicado: (2013)