Machine learning model to predict hypotension after starting continuous renal replacement therapy
Abstract Hypotension after starting continuous renal replacement therapy (CRRT) is associated with worse outcomes compared with normotension, but it is difficult to predict because several factors have interactive and complex effects on the risk. The present study applied machine learning algorithms...
Guardado en:
Autores principales: | Min Woo Kang, Seonmi Kim, Yong Chul Kim, Dong Ki Kim, Kook-Hwan Oh, Kwon Wook Joo, Yon Su Kim, Seung Seok Han |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fe531680bfcd416e8bfb465f14c63a68 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Machine learning-based prediction of acute kidney injury after nephrectomy in patients with renal cell carcinoma
por: Yeonhee Lee, et al.
Publicado: (2021) -
Nationwide Glaucoma incidence in end stage renal disease patients and kidney transplant recipients
por: Jong Joo Moon, et al.
Publicado: (2021) -
Impact of preoperative renal replacement therapy on the clinical outcome of heart transplant patients
por: Darae Kim, et al.
Publicado: (2021) -
Continuous Renal Replacement Therapy for Two Neonates With Hyperammonemia
por: Christopher Markham, et al.
Publicado: (2021) -
Impact of kidney transplantation on the risk of retinal vein occlusion in end-stage renal disease
por: Jangwook Lee, et al.
Publicado: (2021)