Deep learning-based histopathological segmentation for whole slide images of colorectal cancer in a compressed domain
Abstract Automatic pattern recognition using deep learning techniques has become increasingly important. Unfortunately, due to limited system memory, general preprocessing methods for high-resolution images in the spatial domain can lose important data information such as high-frequency information...
Guardado en:
Autores principales: | Hyeongsub Kim, Hongjoon Yoon, Nishant Thakur, Gyoyeon Hwang, Eun Jung Lee, Chulhong Kim, Yosep Chong |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fe5798371932434ca0c4f8e34117fb84 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Accurate diagnosis of lymphoma on whole-slide histopathology images using deep learning
por: Charlotte Syrykh, et al.
Publicado: (2020) -
A generalized deep learning framework for whole-slide image segmentation and analysis
por: Mahendra Khened, et al.
Publicado: (2021) -
Deep Learning Models for Poorly Differentiated Colorectal Adenocarcinoma Classification in Whole Slide Images Using Transfer Learning
por: Masayuki Tsuneki, et al.
Publicado: (2021) -
Efficient cellular annotation of histopathology slides with real-time AI augmentation
por: James A. Diao, et al.
Publicado: (2021) -
Non-melanoma skin cancer segmentation for histopathology dataset
por: Simon M. Thomas, et al.
Publicado: (2021)