A novel dimension reduction algorithm based on weighted kernel principal analysis for gene expression data.
Gene expression data has the characteristics of high dimensionality and a small sample size and contains a large number of redundant genes unrelated to a disease. The direct application of machine learning to classify this type of data will not only incur a great time cost but will also sometimes fa...
Guardado en:
Autores principales: | Wen Bo Liu, Sheng Nan Liang, Xi Wen Qin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fe5964de855540498082f32ea101742b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Kernel weighted least square approach for imputing missing values of metabolomics data
por: Nishith Kumar, et al.
Publicado: (2021) -
Invalid Data Rejection of Audible Noise on AC Transmission Lines Based on Moving Window Kernel Principal Component Analysis
por: Ziyi Cheng, et al.
Publicado: (2021) -
Energy Efficient Medical Data Dimensionality Reduction using Optimized Principal Component Analysis
por: S. Sophia, et al.
Publicado: (2022) -
Adaptive kernel fuzzy clustering for missing data.
por: Anny K G Rodrigues, et al.
Publicado: (2021) -
Adaptive kernel fuzzy clustering for missing data
por: Anny K. G. Rodrigues, et al.
Publicado: (2021)