Biocompatibility of the vital dye Acid Violet-17 on retinal pigment epithelial cells

Ayşegül Tura,1 Aizhan Alt,1 Julia Lüke,1 Salvatore Grisanti,1 Christos Haritoglou,2 Carsten H Meyer,3 Khaled Nassar,1 Matthias Lüke1 On behalf of the International Chromovitrectomy Collaboration 1Department of Ophthalmology, University of Schleswig-Holstein, Lüb...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tura A, Alt A, Lüke J, Grisanti S, Haritoglou C, Meyer CH, Nassar K, Lüke M
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2016
Materias:
Acceso en línea:https://doaj.org/article/fe6a4889acd8461bb30258494c349099
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:fe6a4889acd8461bb30258494c349099
record_format dspace
spelling oai:doaj.org-article:fe6a4889acd8461bb30258494c3490992021-12-02T08:39:14ZBiocompatibility of the vital dye Acid Violet-17 on retinal pigment epithelial cells1177-5483https://doaj.org/article/fe6a4889acd8461bb30258494c3490992016-07-01T00:00:00Zhttps://www.dovepress.com/biocompatibility-of-the-vital-dye-acid-violet-17-on-retinal-pigment-ep-peer-reviewed-article-OPTHhttps://doaj.org/toc/1177-5483Ayşegül Tura,1 Aizhan Alt,1 Julia Lüke,1 Salvatore Grisanti,1 Christos Haritoglou,2 Carsten H Meyer,3 Khaled Nassar,1 Matthias Lüke1 On behalf of the International Chromovitrectomy Collaboration 1Department of Ophthalmology, University of Schleswig-Holstein, Lübeck, Germany; 2Department of Ophthalmology, Ludwig-Maximilians University, Munich, Germany; 3Department of Ophthalmology, Pallas Clinic, Aarau, Switzerland Purpose: To examine the viability and differentiation of retinal pigment epithelial (RPE) cells after exposure to the vital dye Acid Violet-17 (AV-17). Methods: Bovine RPE cells were incubated with AV-17 (0.0625–0.5 mg/mL) for 30 seconds or 5 minutes. Viability was determined by live/dead staining, cleaved CASP3 immunostainings, and MTT test. Actin cytoskeleton was visualized by Alexa 488-phalloidin. Immunocytochemistry was performed to determine the levels of ZO-1, CTNNB1, and KRT19. Results: Exposure to AV-17 at the concentrations of 0.25–0.5 mg/mL resulted in a dose-dependent decrease in viability, the loss of ZO-1 from tight junctions, translocation of CTNNB1 into the cytoplasm and nucleus, disarrangement of the actin cytoskeleton, and a slight increase in KRT19. Conclusion: AV-17 at a concentration <0.125 mg/mL is likely to be well tolerated by the RPE cells, whereas the concentrations from 0.25 mg/mL onward can reduce viability and induce dedifferentiation particularly after long-term exposure. Keywords: Acid Violet-17, retinal pigment epithelial cells, biocompatibility, viability, differentiationTura AAlt ALüke JGrisanti SHaritoglou CMeyer CHNassar KLüke MDove Medical PressarticleAcid Violet-17retinal pigment epithelial cellsbiocompatibilityviabilitydifferentiationOphthalmologyRE1-994ENClinical Ophthalmology, Vol 2016, Iss Issue 1, Pp 1435-1445 (2016)
institution DOAJ
collection DOAJ
language EN
topic Acid Violet-17
retinal pigment epithelial cells
biocompatibility
viability
differentiation
Ophthalmology
RE1-994
spellingShingle Acid Violet-17
retinal pigment epithelial cells
biocompatibility
viability
differentiation
Ophthalmology
RE1-994
Tura A
Alt A
Lüke J
Grisanti S
Haritoglou C
Meyer CH
Nassar K
Lüke M
Biocompatibility of the vital dye Acid Violet-17 on retinal pigment epithelial cells
description Ayşegül Tura,1 Aizhan Alt,1 Julia Lüke,1 Salvatore Grisanti,1 Christos Haritoglou,2 Carsten H Meyer,3 Khaled Nassar,1 Matthias Lüke1 On behalf of the International Chromovitrectomy Collaboration 1Department of Ophthalmology, University of Schleswig-Holstein, Lübeck, Germany; 2Department of Ophthalmology, Ludwig-Maximilians University, Munich, Germany; 3Department of Ophthalmology, Pallas Clinic, Aarau, Switzerland Purpose: To examine the viability and differentiation of retinal pigment epithelial (RPE) cells after exposure to the vital dye Acid Violet-17 (AV-17). Methods: Bovine RPE cells were incubated with AV-17 (0.0625–0.5 mg/mL) for 30 seconds or 5 minutes. Viability was determined by live/dead staining, cleaved CASP3 immunostainings, and MTT test. Actin cytoskeleton was visualized by Alexa 488-phalloidin. Immunocytochemistry was performed to determine the levels of ZO-1, CTNNB1, and KRT19. Results: Exposure to AV-17 at the concentrations of 0.25–0.5 mg/mL resulted in a dose-dependent decrease in viability, the loss of ZO-1 from tight junctions, translocation of CTNNB1 into the cytoplasm and nucleus, disarrangement of the actin cytoskeleton, and a slight increase in KRT19. Conclusion: AV-17 at a concentration <0.125 mg/mL is likely to be well tolerated by the RPE cells, whereas the concentrations from 0.25 mg/mL onward can reduce viability and induce dedifferentiation particularly after long-term exposure. Keywords: Acid Violet-17, retinal pigment epithelial cells, biocompatibility, viability, differentiation
format article
author Tura A
Alt A
Lüke J
Grisanti S
Haritoglou C
Meyer CH
Nassar K
Lüke M
author_facet Tura A
Alt A
Lüke J
Grisanti S
Haritoglou C
Meyer CH
Nassar K
Lüke M
author_sort Tura A
title Biocompatibility of the vital dye Acid Violet-17 on retinal pigment epithelial cells
title_short Biocompatibility of the vital dye Acid Violet-17 on retinal pigment epithelial cells
title_full Biocompatibility of the vital dye Acid Violet-17 on retinal pigment epithelial cells
title_fullStr Biocompatibility of the vital dye Acid Violet-17 on retinal pigment epithelial cells
title_full_unstemmed Biocompatibility of the vital dye Acid Violet-17 on retinal pigment epithelial cells
title_sort biocompatibility of the vital dye acid violet-17 on retinal pigment epithelial cells
publisher Dove Medical Press
publishDate 2016
url https://doaj.org/article/fe6a4889acd8461bb30258494c349099
work_keys_str_mv AT turaa biocompatibilityofthevitaldyeacidviolet17onretinalpigmentepithelialcells
AT alta biocompatibilityofthevitaldyeacidviolet17onretinalpigmentepithelialcells
AT lukej biocompatibilityofthevitaldyeacidviolet17onretinalpigmentepithelialcells
AT grisantis biocompatibilityofthevitaldyeacidviolet17onretinalpigmentepithelialcells
AT haritoglouc biocompatibilityofthevitaldyeacidviolet17onretinalpigmentepithelialcells
AT meyerch biocompatibilityofthevitaldyeacidviolet17onretinalpigmentepithelialcells
AT nassark biocompatibilityofthevitaldyeacidviolet17onretinalpigmentepithelialcells
AT lukem biocompatibilityofthevitaldyeacidviolet17onretinalpigmentepithelialcells
_version_ 1718398443857117184