A Generative Adversarial Network Structure for Learning with Small Numerical Data Sets
In recent years, generative adversarial networks (GANs) have been proposed to generate simulated images, and some works of literature have applied GAN to the analysis of numerical data in many fields, such as the prediction of building energy consumption and the prediction and identification of live...
Guardado en:
Autores principales: | Der-Chiang Li, Szu-Chou Chen, Yao-San Lin, Kuan-Cheng Huang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fe9b46b4b0724a4391e380d7671035eb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Road Surface Crack Detection Method Based on Conditional Generative Adversarial Networks
por: Anastasiia Kyslytsyna, et al.
Publicado: (2021) -
Image and Graph Restoration Dependent on Generative Adversarial Network Algorithm
por: Yuanhao Cao
Publicado: (2021) -
Adversarial Attack for SAR Target Recognition Based on UNet-Generative Adversarial Network
por: Chuan Du, et al.
Publicado: (2021) -
Machine Translation in Low-Resource Languages by an Adversarial Neural Network
por: Mengtao Sun, et al.
Publicado: (2021) -
Contextual Imputation With Missing Sequence of EEG Signals Using Generative Adversarial Networks
por: Woonghee Lee, et al.
Publicado: (2021)