Constructing ordinal partition transition networks from multivariate time series
Abstract A growing number of algorithms have been proposed to map a scalar time series into ordinal partition transition networks. However, most observable phenomena in the empirical sciences are of a multivariate nature. We construct ordinal partition transition networks for multivariate time serie...
Guardado en:
Autores principales: | Jiayang Zhang, Jie Zhou, Ming Tang, Heng Guo, Michael Small, Yong Zou |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fe9b482bc4d6410e809cb677e3224b9c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Structural change detection in ordinal time series.
por: Fuxiao Li, et al.
Publicado: (2021) -
Incorporation of causality structures to complex network analysis of time-varying behaviour of multivariate time series
por: Leo Carlos-Sandberg, et al.
Publicado: (2021) -
Predictive Error Compensating Wavelet Neural Network Model for Multivariable Time Series Prediction
por: Ajla Kulaglic, et al.
Publicado: (2021) -
Causality Distance Measures for Multivariate Time Series with Applications
por: Achilleas Anastasiou, et al.
Publicado: (2021) -
StackDA: A Stacked Dual Attention Neural Network for Multivariate Time-Series Forecasting
por: Jungsoo Hong, et al.
Publicado: (2021)