A Zeroth-Order Adaptive Learning Rate Method to Reduce Cost of Hyperparameter Tuning for Deep Learning
Due to powerful data representation ability, deep learning has dramatically improved the state-of-the-art in many practical applications. However, the utility highly depends on fine-tuning of hyper-parameters, including learning rate, batch size, and network initialization. Although many first-order...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fea104c85f094c74b56e338e92eeb8ae |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sea el primero en dejar un comentario!