A Zeroth-Order Adaptive Learning Rate Method to Reduce Cost of Hyperparameter Tuning for Deep Learning

Due to powerful data representation ability, deep learning has dramatically improved the state-of-the-art in many practical applications. However, the utility highly depends on fine-tuning of hyper-parameters, including learning rate, batch size, and network initialization. Although many first-order...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Yanan Li, Xuebin Ren, Fangyuan Zhao, Shusen Yang
Format: article
Langue:EN
Publié: MDPI AG 2021
Sujets:
T
Accès en ligne:https://doaj.org/article/fea104c85f094c74b56e338e92eeb8ae
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!