A unified drug–target interaction prediction framework based on knowledge graph and recommendation system

Prediction of drug-target interactions (DTI) plays a vital role in drug development through applications in various areas, such as virtual screening for lead discovery, drug repurposing and identification of potential drug side effects. Here, the authors develop a unified framework for DTI predictio...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Qing Ye, Chang-Yu Hsieh, Ziyi Yang, Yu Kang, Jiming Chen, Dongsheng Cao, Shibo He, Tingjun Hou
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/feb43093b20a4dbf8bf7f4189d80feff
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:feb43093b20a4dbf8bf7f4189d80feff
record_format dspace
spelling oai:doaj.org-article:feb43093b20a4dbf8bf7f4189d80feff2021-11-28T12:31:10ZA unified drug–target interaction prediction framework based on knowledge graph and recommendation system10.1038/s41467-021-27137-32041-1723https://doaj.org/article/feb43093b20a4dbf8bf7f4189d80feff2021-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-27137-3https://doaj.org/toc/2041-1723Prediction of drug-target interactions (DTI) plays a vital role in drug development through applications in various areas, such as virtual screening for lead discovery, drug repurposing and identification of potential drug side effects. Here, the authors develop a unified framework for DTI prediction by combining a knowledge graph and a recommendation system.Qing YeChang-Yu HsiehZiyi YangYu KangJiming ChenDongsheng CaoShibo HeTingjun HouNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Qing Ye
Chang-Yu Hsieh
Ziyi Yang
Yu Kang
Jiming Chen
Dongsheng Cao
Shibo He
Tingjun Hou
A unified drug–target interaction prediction framework based on knowledge graph and recommendation system
description Prediction of drug-target interactions (DTI) plays a vital role in drug development through applications in various areas, such as virtual screening for lead discovery, drug repurposing and identification of potential drug side effects. Here, the authors develop a unified framework for DTI prediction by combining a knowledge graph and a recommendation system.
format article
author Qing Ye
Chang-Yu Hsieh
Ziyi Yang
Yu Kang
Jiming Chen
Dongsheng Cao
Shibo He
Tingjun Hou
author_facet Qing Ye
Chang-Yu Hsieh
Ziyi Yang
Yu Kang
Jiming Chen
Dongsheng Cao
Shibo He
Tingjun Hou
author_sort Qing Ye
title A unified drug–target interaction prediction framework based on knowledge graph and recommendation system
title_short A unified drug–target interaction prediction framework based on knowledge graph and recommendation system
title_full A unified drug–target interaction prediction framework based on knowledge graph and recommendation system
title_fullStr A unified drug–target interaction prediction framework based on knowledge graph and recommendation system
title_full_unstemmed A unified drug–target interaction prediction framework based on knowledge graph and recommendation system
title_sort unified drug–target interaction prediction framework based on knowledge graph and recommendation system
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/feb43093b20a4dbf8bf7f4189d80feff
work_keys_str_mv AT qingye aunifieddrugtargetinteractionpredictionframeworkbasedonknowledgegraphandrecommendationsystem
AT changyuhsieh aunifieddrugtargetinteractionpredictionframeworkbasedonknowledgegraphandrecommendationsystem
AT ziyiyang aunifieddrugtargetinteractionpredictionframeworkbasedonknowledgegraphandrecommendationsystem
AT yukang aunifieddrugtargetinteractionpredictionframeworkbasedonknowledgegraphandrecommendationsystem
AT jimingchen aunifieddrugtargetinteractionpredictionframeworkbasedonknowledgegraphandrecommendationsystem
AT dongshengcao aunifieddrugtargetinteractionpredictionframeworkbasedonknowledgegraphandrecommendationsystem
AT shibohe aunifieddrugtargetinteractionpredictionframeworkbasedonknowledgegraphandrecommendationsystem
AT tingjunhou aunifieddrugtargetinteractionpredictionframeworkbasedonknowledgegraphandrecommendationsystem
AT qingye unifieddrugtargetinteractionpredictionframeworkbasedonknowledgegraphandrecommendationsystem
AT changyuhsieh unifieddrugtargetinteractionpredictionframeworkbasedonknowledgegraphandrecommendationsystem
AT ziyiyang unifieddrugtargetinteractionpredictionframeworkbasedonknowledgegraphandrecommendationsystem
AT yukang unifieddrugtargetinteractionpredictionframeworkbasedonknowledgegraphandrecommendationsystem
AT jimingchen unifieddrugtargetinteractionpredictionframeworkbasedonknowledgegraphandrecommendationsystem
AT dongshengcao unifieddrugtargetinteractionpredictionframeworkbasedonknowledgegraphandrecommendationsystem
AT shibohe unifieddrugtargetinteractionpredictionframeworkbasedonknowledgegraphandrecommendationsystem
AT tingjunhou unifieddrugtargetinteractionpredictionframeworkbasedonknowledgegraphandrecommendationsystem
_version_ 1718407931751301120