A unified drug–target interaction prediction framework based on knowledge graph and recommendation system
Prediction of drug-target interactions (DTI) plays a vital role in drug development through applications in various areas, such as virtual screening for lead discovery, drug repurposing and identification of potential drug side effects. Here, the authors develop a unified framework for DTI predictio...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/feb43093b20a4dbf8bf7f4189d80feff |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:feb43093b20a4dbf8bf7f4189d80feff |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:feb43093b20a4dbf8bf7f4189d80feff2021-11-28T12:31:10ZA unified drug–target interaction prediction framework based on knowledge graph and recommendation system10.1038/s41467-021-27137-32041-1723https://doaj.org/article/feb43093b20a4dbf8bf7f4189d80feff2021-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-27137-3https://doaj.org/toc/2041-1723Prediction of drug-target interactions (DTI) plays a vital role in drug development through applications in various areas, such as virtual screening for lead discovery, drug repurposing and identification of potential drug side effects. Here, the authors develop a unified framework for DTI prediction by combining a knowledge graph and a recommendation system.Qing YeChang-Yu HsiehZiyi YangYu KangJiming ChenDongsheng CaoShibo HeTingjun HouNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Qing Ye Chang-Yu Hsieh Ziyi Yang Yu Kang Jiming Chen Dongsheng Cao Shibo He Tingjun Hou A unified drug–target interaction prediction framework based on knowledge graph and recommendation system |
description |
Prediction of drug-target interactions (DTI) plays a vital role in drug development through applications in various areas, such as virtual screening for lead discovery, drug repurposing and identification of potential drug side effects. Here, the authors develop a unified framework for DTI prediction by combining a knowledge graph and a recommendation system. |
format |
article |
author |
Qing Ye Chang-Yu Hsieh Ziyi Yang Yu Kang Jiming Chen Dongsheng Cao Shibo He Tingjun Hou |
author_facet |
Qing Ye Chang-Yu Hsieh Ziyi Yang Yu Kang Jiming Chen Dongsheng Cao Shibo He Tingjun Hou |
author_sort |
Qing Ye |
title |
A unified drug–target interaction prediction framework based on knowledge graph and recommendation system |
title_short |
A unified drug–target interaction prediction framework based on knowledge graph and recommendation system |
title_full |
A unified drug–target interaction prediction framework based on knowledge graph and recommendation system |
title_fullStr |
A unified drug–target interaction prediction framework based on knowledge graph and recommendation system |
title_full_unstemmed |
A unified drug–target interaction prediction framework based on knowledge graph and recommendation system |
title_sort |
unified drug–target interaction prediction framework based on knowledge graph and recommendation system |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/feb43093b20a4dbf8bf7f4189d80feff |
work_keys_str_mv |
AT qingye aunifieddrugtargetinteractionpredictionframeworkbasedonknowledgegraphandrecommendationsystem AT changyuhsieh aunifieddrugtargetinteractionpredictionframeworkbasedonknowledgegraphandrecommendationsystem AT ziyiyang aunifieddrugtargetinteractionpredictionframeworkbasedonknowledgegraphandrecommendationsystem AT yukang aunifieddrugtargetinteractionpredictionframeworkbasedonknowledgegraphandrecommendationsystem AT jimingchen aunifieddrugtargetinteractionpredictionframeworkbasedonknowledgegraphandrecommendationsystem AT dongshengcao aunifieddrugtargetinteractionpredictionframeworkbasedonknowledgegraphandrecommendationsystem AT shibohe aunifieddrugtargetinteractionpredictionframeworkbasedonknowledgegraphandrecommendationsystem AT tingjunhou aunifieddrugtargetinteractionpredictionframeworkbasedonknowledgegraphandrecommendationsystem AT qingye unifieddrugtargetinteractionpredictionframeworkbasedonknowledgegraphandrecommendationsystem AT changyuhsieh unifieddrugtargetinteractionpredictionframeworkbasedonknowledgegraphandrecommendationsystem AT ziyiyang unifieddrugtargetinteractionpredictionframeworkbasedonknowledgegraphandrecommendationsystem AT yukang unifieddrugtargetinteractionpredictionframeworkbasedonknowledgegraphandrecommendationsystem AT jimingchen unifieddrugtargetinteractionpredictionframeworkbasedonknowledgegraphandrecommendationsystem AT dongshengcao unifieddrugtargetinteractionpredictionframeworkbasedonknowledgegraphandrecommendationsystem AT shibohe unifieddrugtargetinteractionpredictionframeworkbasedonknowledgegraphandrecommendationsystem AT tingjunhou unifieddrugtargetinteractionpredictionframeworkbasedonknowledgegraphandrecommendationsystem |
_version_ |
1718407931751301120 |