A unified drug–target interaction prediction framework based on knowledge graph and recommendation system
Prediction of drug-target interactions (DTI) plays a vital role in drug development through applications in various areas, such as virtual screening for lead discovery, drug repurposing and identification of potential drug side effects. Here, the authors develop a unified framework for DTI predictio...
Guardado en:
Autores principales: | Qing Ye, Chang-Yu Hsieh, Ziyi Yang, Yu Kang, Jiming Chen, Dongsheng Cao, Shibo He, Tingjun Hou |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/feb43093b20a4dbf8bf7f4189d80feff |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Knowledge Graph-Enhanced Attention Aggregation Network for Making Recommendations
por: Dehai Zhang, et al.
Publicado: (2021) -
MNI: An enhanced multi-task neighborhood interaction model for recommendation on knowledge graph.
por: Xintao Ma, et al.
Publicado: (2021) -
MNI: An enhanced multi-task neighborhood interaction model for recommendation on knowledge graph
por: Xintao Ma, et al.
Publicado: (2021) -
Drug–target interaction prediction using unifying of graph regularized nuclear norm with bilinear factorization
por: Ali Ghanbari Sorkhi, et al.
Publicado: (2021) -
Multitask Healthcare Management Recommendation System Leveraging Knowledge Graph
por: Wanheng Liu, et al.
Publicado: (2021)