One Generalized Mixture Pareto Distribution and Estimation of the Parameters by the EM Algorithm for Complete and Right-Censored Data
A new mixture generalized Pareto distribution is introduced. Then, some of its attributes are explored. The maximum likelihood method and expectation maximization (EM) algorithm have been applied to estimate the parameters for complete and right-censored data. In a simulation study, the bias, absolu...
Guardado en:
Autor principal: | Mohamed Kayid |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/feb870ec763b42d0a78b81cd75bb6430 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Some common and dynamic properties of logarithmic Pareto distribution with applications
por: Kayid Mohamed
Publicado: (2021) -
Analysis for Xgamma Parameters of Life under Type-II Adaptive Progressively Hybrid Censoring with Applications in Engineering and Chemistry
por: Ahmed Elshahhat, et al.
Publicado: (2021) -
Fast Approximations of the Jeffreys Divergence between Univariate Gaussian Mixtures via Mixture Conversions to Exponential-Polynomial Distributions
por: Frank Nielsen
Publicado: (2021) -
On Reliability Estimation of Lomax Distribution under Adaptive Type-I Progressive Hybrid Censoring Scheme
por: Hassan Okasha, et al.
Publicado: (2021) -
How to fit models of recognition memory data using maximum likelihood.
por: John C. Dunn
Publicado: (2010)