One Generalized Mixture Pareto Distribution and Estimation of the Parameters by the EM Algorithm for Complete and Right-Censored Data
A new mixture generalized Pareto distribution is introduced. Then, some of its attributes are explored. The maximum likelihood method and expectation maximization (EM) algorithm have been applied to estimate the parameters for complete and right-censored data. In a simulation study, the bias, absolu...
Enregistré dans:
Auteur principal: | Mohamed Kayid |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/feb870ec763b42d0a78b81cd75bb6430 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Some common and dynamic properties of logarithmic Pareto distribution with applications
par: Kayid Mohamed
Publié: (2021) -
Analysis for Xgamma Parameters of Life under Type-II Adaptive Progressively Hybrid Censoring with Applications in Engineering and Chemistry
par: Ahmed Elshahhat, et autres
Publié: (2021) -
Fast Approximations of the Jeffreys Divergence between Univariate Gaussian Mixtures via Mixture Conversions to Exponential-Polynomial Distributions
par: Frank Nielsen
Publié: (2021) -
On Reliability Estimation of Lomax Distribution under Adaptive Type-I Progressive Hybrid Censoring Scheme
par: Hassan Okasha, et autres
Publié: (2021) -
How to fit models of recognition memory data using maximum likelihood.
par: John C. Dunn
Publié: (2010)