Generalized invexity and mathematical programs
In this paper, using generalized convexity assumptions, we show that Mstationary condition is sufficient for global or local optimality under some mathematical programming problem with equilibrium constraints(MPEC). Further, we formulate and study Wolfe type and Mond-Weir type dual models for the MP...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
University of Belgrade
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/feb92ee66d364fdebeb5381a602710ec |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:feb92ee66d364fdebeb5381a602710ec |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:feb92ee66d364fdebeb5381a602710ec2021-12-01T13:00:33ZGeneralized invexity and mathematical programs0354-02431820-743X10.2298/YJOR200615035Jhttps://doaj.org/article/feb92ee66d364fdebeb5381a602710ec2021-01-01T00:00:00Zhttp://www.doiserbia.nb.rs/img/doi/0354-0243/2021/0354-02432000035J.pdfhttps://doaj.org/toc/0354-0243https://doaj.org/toc/1820-743XIn this paper, using generalized convexity assumptions, we show that Mstationary condition is sufficient for global or local optimality under some mathematical programming problem with equilibrium constraints(MPEC). Further, we formulate and study Wolfe type and Mond-Weir type dual models for the MPEC, and we establish weak and strong duality theorems.Joshi Bhuwan ChandraMohan RakeshPankajUniversity of Belgradearticleconstraint qualificationdualitygeneralized convex functionManagement information systemsT58.6-58.62ENYugoslav Journal of Operations Research, Vol 31, Iss 4, Pp 455-469 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
constraint qualification duality generalized convex function Management information systems T58.6-58.62 |
spellingShingle |
constraint qualification duality generalized convex function Management information systems T58.6-58.62 Joshi Bhuwan Chandra Mohan Rakesh Pankaj Generalized invexity and mathematical programs |
description |
In this paper, using generalized convexity assumptions, we show that Mstationary condition is sufficient for global or local optimality under some mathematical programming problem with equilibrium constraints(MPEC). Further, we formulate and study Wolfe type and Mond-Weir type dual models for the MPEC, and we establish weak and strong duality theorems. |
format |
article |
author |
Joshi Bhuwan Chandra Mohan Rakesh Pankaj |
author_facet |
Joshi Bhuwan Chandra Mohan Rakesh Pankaj |
author_sort |
Joshi Bhuwan Chandra |
title |
Generalized invexity and mathematical programs |
title_short |
Generalized invexity and mathematical programs |
title_full |
Generalized invexity and mathematical programs |
title_fullStr |
Generalized invexity and mathematical programs |
title_full_unstemmed |
Generalized invexity and mathematical programs |
title_sort |
generalized invexity and mathematical programs |
publisher |
University of Belgrade |
publishDate |
2021 |
url |
https://doaj.org/article/feb92ee66d364fdebeb5381a602710ec |
work_keys_str_mv |
AT joshibhuwanchandra generalizedinvexityandmathematicalprograms AT mohanrakesh generalizedinvexityandmathematicalprograms AT pankaj generalizedinvexityandmathematicalprograms |
_version_ |
1718405213498376192 |