Generalized invexity and mathematical programs

In this paper, using generalized convexity assumptions, we show that Mstationary condition is sufficient for global or local optimality under some mathematical programming problem with equilibrium constraints(MPEC). Further, we formulate and study Wolfe type and Mond-Weir type dual models for the MP...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Joshi Bhuwan Chandra, Mohan Rakesh, Pankaj
Formato: article
Lenguaje:EN
Publicado: University of Belgrade 2021
Materias:
Acceso en línea:https://doaj.org/article/feb92ee66d364fdebeb5381a602710ec
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:feb92ee66d364fdebeb5381a602710ec
record_format dspace
spelling oai:doaj.org-article:feb92ee66d364fdebeb5381a602710ec2021-12-01T13:00:33ZGeneralized invexity and mathematical programs0354-02431820-743X10.2298/YJOR200615035Jhttps://doaj.org/article/feb92ee66d364fdebeb5381a602710ec2021-01-01T00:00:00Zhttp://www.doiserbia.nb.rs/img/doi/0354-0243/2021/0354-02432000035J.pdfhttps://doaj.org/toc/0354-0243https://doaj.org/toc/1820-743XIn this paper, using generalized convexity assumptions, we show that Mstationary condition is sufficient for global or local optimality under some mathematical programming problem with equilibrium constraints(MPEC). Further, we formulate and study Wolfe type and Mond-Weir type dual models for the MPEC, and we establish weak and strong duality theorems.Joshi Bhuwan ChandraMohan RakeshPankajUniversity of Belgradearticleconstraint qualificationdualitygeneralized convex functionManagement information systemsT58.6-58.62ENYugoslav Journal of Operations Research, Vol 31, Iss 4, Pp 455-469 (2021)
institution DOAJ
collection DOAJ
language EN
topic constraint qualification
duality
generalized convex function
Management information systems
T58.6-58.62
spellingShingle constraint qualification
duality
generalized convex function
Management information systems
T58.6-58.62
Joshi Bhuwan Chandra
Mohan Rakesh
Pankaj
Generalized invexity and mathematical programs
description In this paper, using generalized convexity assumptions, we show that Mstationary condition is sufficient for global or local optimality under some mathematical programming problem with equilibrium constraints(MPEC). Further, we formulate and study Wolfe type and Mond-Weir type dual models for the MPEC, and we establish weak and strong duality theorems.
format article
author Joshi Bhuwan Chandra
Mohan Rakesh
Pankaj
author_facet Joshi Bhuwan Chandra
Mohan Rakesh
Pankaj
author_sort Joshi Bhuwan Chandra
title Generalized invexity and mathematical programs
title_short Generalized invexity and mathematical programs
title_full Generalized invexity and mathematical programs
title_fullStr Generalized invexity and mathematical programs
title_full_unstemmed Generalized invexity and mathematical programs
title_sort generalized invexity and mathematical programs
publisher University of Belgrade
publishDate 2021
url https://doaj.org/article/feb92ee66d364fdebeb5381a602710ec
work_keys_str_mv AT joshibhuwanchandra generalizedinvexityandmathematicalprograms
AT mohanrakesh generalizedinvexityandmathematicalprograms
AT pankaj generalizedinvexityandmathematicalprograms
_version_ 1718405213498376192