Practical Algorithmic Trading Using State Representation Learning and Imitative Reinforcement Learning
Algorithmic trading allows investors to avoid emotional and irrational trading decisions and helps them make profits using modern computer technology. In recent years, reinforcement learning has yielded promising results for algorithmic trading. Two prominent challenges in algorithmic trading with r...
Enregistré dans:
Auteurs principaux: | Deog-Yeong Park, Ki-Hoon Lee |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/fec1d81fddfe4844bbcbdf81d0705b41 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Reinforcement Learning Approaches to Optimal Market Making
par: Bruno Gašperov, et autres
Publié: (2021) -
Applications of Multi-Agent Deep Reinforcement Learning: Models and Algorithms
par: Abdikarim Mohamed Ibrahim, et autres
Publié: (2021) -
An Experimental Study on State Representation Extraction for Vision-Based Deep Reinforcement Learning
par: Junkai Ren, et autres
Publié: (2021) -
Home Energy Management Algorithm Based on Deep Reinforcement Learning Using Multistep Prediction
par: Naoki Kodama, et autres
Publié: (2021) -
An Adaptive Threshold for the Canny Algorithm With Deep Reinforcement Learning
par: Keong-Hun Choi, et autres
Publié: (2021)