Practical Algorithmic Trading Using State Representation Learning and Imitative Reinforcement Learning
Algorithmic trading allows investors to avoid emotional and irrational trading decisions and helps them make profits using modern computer technology. In recent years, reinforcement learning has yielded promising results for algorithmic trading. Two prominent challenges in algorithmic trading with r...
Guardado en:
Autores principales: | Deog-Yeong Park, Ki-Hoon Lee |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fec1d81fddfe4844bbcbdf81d0705b41 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Reinforcement Learning Approaches to Optimal Market Making
por: Bruno Gašperov, et al.
Publicado: (2021) -
Applications of Multi-Agent Deep Reinforcement Learning: Models and Algorithms
por: Abdikarim Mohamed Ibrahim, et al.
Publicado: (2021) -
An Experimental Study on State Representation Extraction for Vision-Based Deep Reinforcement Learning
por: Junkai Ren, et al.
Publicado: (2021) -
Home Energy Management Algorithm Based on Deep Reinforcement Learning Using Multistep Prediction
por: Naoki Kodama, et al.
Publicado: (2021) -
An Adaptive Threshold for the Canny Algorithm With Deep Reinforcement Learning
por: Keong-Hun Choi, et al.
Publicado: (2021)