A deep transfer learning approach for wearable sleep stage classification with photoplethysmography
Abstract Unobtrusive home sleep monitoring using wrist-worn wearable photoplethysmography (PPG) could open the way for better sleep disorder screening and health monitoring. However, PPG is rarely included in large sleep studies with gold-standard sleep annotation from polysomnography. Therefore, tr...
Guardado en:
Autores principales: | Mustafa Radha, Pedro Fonseca, Arnaud Moreau, Marco Ross, Andreas Cerny, Peter Anderer, Xi Long, Ronald M. Aarts |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fec60914d8ef48c2a357f505610bfa45 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Evaluation of biases in remote photoplethysmography methods
por: Ananyananda Dasari, et al.
Publicado: (2021) -
Photoplethysmography based atrial fibrillation detection: a review
por: Tania Pereira, et al.
Publicado: (2020) -
Development of digital measures for nighttime scratch and sleep using wrist-worn wearable devices
por: Nikhil Mahadevan, et al.
Publicado: (2021) -
Trait-like nocturnal sleep behavior identified by combining wearable, phone-use, and self-report data
por: Stijn A. A. Massar, et al.
Publicado: (2021) -
Enabling precision rehabilitation interventions using wearable sensors and machine learning to track motor recovery
por: Catherine Adans-Dester, et al.
Publicado: (2020)