PARGT: a software tool for predicting antimicrobial resistance in bacteria
Abstract With the ever-increasing availability of whole-genome sequences, machine-learning approaches can be used as an alternative to traditional alignment-based methods for identifying new antimicrobial-resistance genes. Such approaches are especially helpful when pathogens cannot be cultured in t...
Guardado en:
Autores principales: | Abu Sayed Chowdhury, Douglas R. Call, Shira L. Broschat |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fecbf25a3723448bb1b91406076c2eaf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Antimicrobial resistant enteric bacteria are widely distributed amongst people, animals and the environment in Tanzania
por: Murugan Subbiah, et al.
Publicado: (2020) -
Antimicrobial multi-resistance Staphylococci and gene transferring in bacteria
por: MR Ghobadi Nejad
Publicado: (2003) -
In vitro activity of antimicrobial peptide CDP-B11 alone and in combination with colistin against colistin-resistant and multidrug-resistant Escherichia coli
por: Kaitlin S. Witherell, et al.
Publicado: (2021) -
The role of vaccines in combating antimicrobial resistance (AMR) bacteria
por: Saad Alghamdi
Publicado: (2021) -
Antimicrobial susceptibility and molecular species identification of clinical carbapenem-resistant bacteria
por: MAULIN INGGRAINI, et al.
Publicado: (2021)