Machine learning prediction of the Madden-Julian oscillation
Abstract The socioeconomic impact of weather extremes draws the attention of researchers to the development of novel methodologies to make more accurate weather predictions. The Madden–Julian oscillation (MJO) is the dominant mode of variability in the tropical atmosphere on sub-seasonal time scales...
Guardado en:
Autores principales: | Riccardo Silini, Marcelo Barreiro, Cristina Masoller |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fececcd91ff74ab4ac7e491179b51cad |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Publisher Correction: An oceanic pathway for Madden–Julian Oscillation influence on Maritime Continent Tropical Cyclones
por: Karthik Balaguru, et al.
Publicado: (2021) -
Dynamic Characteristics of the Circulation and Diurnal Spatial Cycle of Outgoing Longwave Radiation in the Different Phases of the Madden–Julian Oscillation during the Formation of the South Atlantic Convergence Zone
por: Liviany P. Viana, et al.
Publicado: (2021) -
Oscillations in deep-open-cells during winter Mediterranean cyclones
por: Huan Liu, et al.
Publicado: (2021) -
Flow dependence of wintertime subseasonal prediction skill over Europe
por: C. Ardilouze, et al.
Publicado: (2021) -
NAO predictability from external forcing in the late 20th century
por: Jeremy M. Klavans, et al.
Publicado: (2021)