Long time decay for 3D Navier-Stokes equations in Fourier-Lei-Lin spaces
In this paper, we study the long time decay of global solution to the 3D incompressible Navier-Stokes equations. We prove that if u∈C(R+,X−1,σ(R3))u\in {\mathcal{C}}\left({{\mathbb{R}}}^{+},{{\mathcal{X}}}^{-1,\sigma }\left({{\mathbb{R}}}^{3})) is a global solution to the considered equation, where...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fed7d230b2664312a936e2af85cf76cd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:fed7d230b2664312a936e2af85cf76cd |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:fed7d230b2664312a936e2af85cf76cd2021-12-05T14:10:53ZLong time decay for 3D Navier-Stokes equations in Fourier-Lei-Lin spaces2391-545510.1515/math-2021-0060https://doaj.org/article/fed7d230b2664312a936e2af85cf76cd2021-08-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0060https://doaj.org/toc/2391-5455In this paper, we study the long time decay of global solution to the 3D incompressible Navier-Stokes equations. We prove that if u∈C(R+,X−1,σ(R3))u\in {\mathcal{C}}\left({{\mathbb{R}}}^{+},{{\mathcal{X}}}^{-1,\sigma }\left({{\mathbb{R}}}^{3})) is a global solution to the considered equation, where Xi,σ(R3){{\mathcal{X}}}^{i,\sigma }\left({{\mathbb{R}}}^{3}) is the Fourier-Lei-Lin space with parameters i=−1i=-1 and σ≥−1\sigma \ge -1, then ‖u(t)‖X−1,σ\Vert u\left(t){\Vert }_{{{\mathcal{X}}}^{-1,\sigma }} decays to zero as time goes to infinity. The used techniques are based on Fourier analysis.Jlali LotfiDe Gruyterarticlenavier-stokes equationscritical spaceslong time decay35q3035d35MathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 898-908 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
navier-stokes equations critical spaces long time decay 35q30 35d35 Mathematics QA1-939 |
spellingShingle |
navier-stokes equations critical spaces long time decay 35q30 35d35 Mathematics QA1-939 Jlali Lotfi Long time decay for 3D Navier-Stokes equations in Fourier-Lei-Lin spaces |
description |
In this paper, we study the long time decay of global solution to the 3D incompressible Navier-Stokes equations. We prove that if u∈C(R+,X−1,σ(R3))u\in {\mathcal{C}}\left({{\mathbb{R}}}^{+},{{\mathcal{X}}}^{-1,\sigma }\left({{\mathbb{R}}}^{3})) is a global solution to the considered equation, where Xi,σ(R3){{\mathcal{X}}}^{i,\sigma }\left({{\mathbb{R}}}^{3}) is the Fourier-Lei-Lin space with parameters i=−1i=-1 and σ≥−1\sigma \ge -1, then ‖u(t)‖X−1,σ\Vert u\left(t){\Vert }_{{{\mathcal{X}}}^{-1,\sigma }} decays to zero as time goes to infinity. The used techniques are based on Fourier analysis. |
format |
article |
author |
Jlali Lotfi |
author_facet |
Jlali Lotfi |
author_sort |
Jlali Lotfi |
title |
Long time decay for 3D Navier-Stokes equations in Fourier-Lei-Lin spaces |
title_short |
Long time decay for 3D Navier-Stokes equations in Fourier-Lei-Lin spaces |
title_full |
Long time decay for 3D Navier-Stokes equations in Fourier-Lei-Lin spaces |
title_fullStr |
Long time decay for 3D Navier-Stokes equations in Fourier-Lei-Lin spaces |
title_full_unstemmed |
Long time decay for 3D Navier-Stokes equations in Fourier-Lei-Lin spaces |
title_sort |
long time decay for 3d navier-stokes equations in fourier-lei-lin spaces |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/fed7d230b2664312a936e2af85cf76cd |
work_keys_str_mv |
AT jlalilotfi longtimedecayfor3dnavierstokesequationsinfourierleilinspaces |
_version_ |
1718371639826055168 |