Long time decay for 3D Navier-Stokes equations in Fourier-Lei-Lin spaces

In this paper, we study the long time decay of global solution to the 3D incompressible Navier-Stokes equations. We prove that if u∈C(R+,X−1,σ(R3))u\in {\mathcal{C}}\left({{\mathbb{R}}}^{+},{{\mathcal{X}}}^{-1,\sigma }\left({{\mathbb{R}}}^{3})) is a global solution to the considered equation, where...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Jlali Lotfi
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/fed7d230b2664312a936e2af85cf76cd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:fed7d230b2664312a936e2af85cf76cd
record_format dspace
spelling oai:doaj.org-article:fed7d230b2664312a936e2af85cf76cd2021-12-05T14:10:53ZLong time decay for 3D Navier-Stokes equations in Fourier-Lei-Lin spaces2391-545510.1515/math-2021-0060https://doaj.org/article/fed7d230b2664312a936e2af85cf76cd2021-08-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0060https://doaj.org/toc/2391-5455In this paper, we study the long time decay of global solution to the 3D incompressible Navier-Stokes equations. We prove that if u∈C(R+,X−1,σ(R3))u\in {\mathcal{C}}\left({{\mathbb{R}}}^{+},{{\mathcal{X}}}^{-1,\sigma }\left({{\mathbb{R}}}^{3})) is a global solution to the considered equation, where Xi,σ(R3){{\mathcal{X}}}^{i,\sigma }\left({{\mathbb{R}}}^{3}) is the Fourier-Lei-Lin space with parameters i=−1i=-1 and σ≥−1\sigma \ge -1, then ‖u(t)‖X−1,σ\Vert u\left(t){\Vert }_{{{\mathcal{X}}}^{-1,\sigma }} decays to zero as time goes to infinity. The used techniques are based on Fourier analysis.Jlali LotfiDe Gruyterarticlenavier-stokes equationscritical spaceslong time decay35q3035d35MathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 898-908 (2021)
institution DOAJ
collection DOAJ
language EN
topic navier-stokes equations
critical spaces
long time decay
35q30
35d35
Mathematics
QA1-939
spellingShingle navier-stokes equations
critical spaces
long time decay
35q30
35d35
Mathematics
QA1-939
Jlali Lotfi
Long time decay for 3D Navier-Stokes equations in Fourier-Lei-Lin spaces
description In this paper, we study the long time decay of global solution to the 3D incompressible Navier-Stokes equations. We prove that if u∈C(R+,X−1,σ(R3))u\in {\mathcal{C}}\left({{\mathbb{R}}}^{+},{{\mathcal{X}}}^{-1,\sigma }\left({{\mathbb{R}}}^{3})) is a global solution to the considered equation, where Xi,σ(R3){{\mathcal{X}}}^{i,\sigma }\left({{\mathbb{R}}}^{3}) is the Fourier-Lei-Lin space with parameters i=−1i=-1 and σ≥−1\sigma \ge -1, then ‖u(t)‖X−1,σ\Vert u\left(t){\Vert }_{{{\mathcal{X}}}^{-1,\sigma }} decays to zero as time goes to infinity. The used techniques are based on Fourier analysis.
format article
author Jlali Lotfi
author_facet Jlali Lotfi
author_sort Jlali Lotfi
title Long time decay for 3D Navier-Stokes equations in Fourier-Lei-Lin spaces
title_short Long time decay for 3D Navier-Stokes equations in Fourier-Lei-Lin spaces
title_full Long time decay for 3D Navier-Stokes equations in Fourier-Lei-Lin spaces
title_fullStr Long time decay for 3D Navier-Stokes equations in Fourier-Lei-Lin spaces
title_full_unstemmed Long time decay for 3D Navier-Stokes equations in Fourier-Lei-Lin spaces
title_sort long time decay for 3d navier-stokes equations in fourier-lei-lin spaces
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/fed7d230b2664312a936e2af85cf76cd
work_keys_str_mv AT jlalilotfi longtimedecayfor3dnavierstokesequationsinfourierleilinspaces
_version_ 1718371639826055168