Long time decay for 3D Navier-Stokes equations in Fourier-Lei-Lin spaces
In this paper, we study the long time decay of global solution to the 3D incompressible Navier-Stokes equations. We prove that if u∈C(R+,X−1,σ(R3))u\in {\mathcal{C}}\left({{\mathbb{R}}}^{+},{{\mathcal{X}}}^{-1,\sigma }\left({{\mathbb{R}}}^{3})) is a global solution to the considered equation, where...
Guardado en:
Autor principal: | Jlali Lotfi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fed7d230b2664312a936e2af85cf76cd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Logarithmically improved regularity criteria for the Navier-Stokes equations in homogeneous Besov spaces
por: Nguyen Anh Dao, et al.
Publicado: (2021) -
A subgrid stabilized method for Navier-Stokes equations with nonlinear slip boundary conditions
por: Xiaoxia Dai, et al.
Publicado: (2021) -
Positive solutions for (p, q)-equations with convection and a sign-changing reaction
por: Zeng Shengda, et al.
Publicado: (2021) -
Lane-Emden equations perturbed by nonhomogeneous potential in the super critical case
por: Ma Yong, et al.
Publicado: (2021) -
General decay rate for a viscoelastic wave equation with distributed delay and Balakrishnan-Taylor damping
por: Choucha Abdelbaki, et al.
Publicado: (2021)