Existence results for double phase problems depending on Robin and Steklov eigenvalues for the p-Laplacian

In this paper we study double phase problems with nonlinear boundary condition and gradient dependence. Under quite general assumptions we prove existence results for such problems where the perturbations satisfy a suitable behavior in the origin and at infinity. Our proofs make use of variational t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Manouni Said El, Marino Greta, Winkert Patrick
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/fedbac28d33e451a8cd38ff65371fd8a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In this paper we study double phase problems with nonlinear boundary condition and gradient dependence. Under quite general assumptions we prove existence results for such problems where the perturbations satisfy a suitable behavior in the origin and at infinity. Our proofs make use of variational tools, truncation techniques and comparison methods. The obtained solutions depend on the first eigenvalues of the Robin and Steklov eigenvalue problems for the p-Laplacian.