Existence results for double phase problems depending on Robin and Steklov eigenvalues for the p-Laplacian
In this paper we study double phase problems with nonlinear boundary condition and gradient dependence. Under quite general assumptions we prove existence results for such problems where the perturbations satisfy a suitable behavior in the origin and at infinity. Our proofs make use of variational t...
Guardado en:
Autores principales: | Manouni Said El, Marino Greta, Winkert Patrick |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fedbac28d33e451a8cd38ff65371fd8a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Multiplicity of positive solutions for a degenerate nonlocal problem with p-Laplacian
por: Candito Pasquale, et al.
Publicado: (2021) -
On the uniqueness for weak solutions of steady double-phase fluids
por: Abdelwahed Mohamed, et al.
Publicado: (2021) -
Bifurcation analysis for a modified quasilinear equation with negative exponent
por: Chen Siyu, et al.
Publicado: (2021) -
Existence and concentration of positive solutions for a critical p&q equation
por: Costa Gustavo S., et al.
Publicado: (2021) -
Refined second boundary behavior of the unique strictly convex solution to a singular Monge-Ampère equation
por: Wan Haitao, et al.
Publicado: (2021)