A voltage-sensitive dye-based assay for the identification of differentiated neurons derived from embryonic neural stem cell cultures.
<h4>Background</h4>Pluripotent and multipotent stem cells hold great therapeutical promise for the replacement of degenerated tissue in neurological diseases. To fulfill that promise we have to understand the mechanisms underlying the differentiation of multipotent cells into specific ty...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2010
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fedefb16c3f6464ea4f17c5a8c7914aa |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:fedefb16c3f6464ea4f17c5a8c7914aa |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:fedefb16c3f6464ea4f17c5a8c7914aa2021-11-18T07:02:30ZA voltage-sensitive dye-based assay for the identification of differentiated neurons derived from embryonic neural stem cell cultures.1932-620310.1371/journal.pone.0013833https://doaj.org/article/fedefb16c3f6464ea4f17c5a8c7914aa2010-11-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/21079795/?tool=EBIhttps://doaj.org/toc/1932-6203<h4>Background</h4>Pluripotent and multipotent stem cells hold great therapeutical promise for the replacement of degenerated tissue in neurological diseases. To fulfill that promise we have to understand the mechanisms underlying the differentiation of multipotent cells into specific types of neurons. Embryonic stem cell (ESC) and embryonic neural stem cell (NSC) cultures provide a valuable tool to study the processes of neural differentiation, which can be assessed using immunohistochemistry, gene expression, Ca(2+)-imaging or electrophysiology. However, indirect methods such as protein and gene analysis cannot provide direct evidence of neuronal functionality. In contrast, direct methods such as electrophysiological techniques are well suited to produce direct evidence of neural functionality but are limited to the study of a few cells on a culture plate.<h4>Methodology/principal findings</h4>In this study we describe a novel method for the detection of action potential-capable neurons differentiated from embryonic NSC cultures using fast voltage-sensitive dyes (VSD). We found that the use of extracellularly applied VSD resulted in a more detailed labeling of cellular processes compared to calcium indicators. In addition, VSD changes in fluorescence translated precisely to action potential kinetics as assessed by the injection of simulated slow and fast sodium currents using the dynamic clamp technique. We further demonstrate the use of a finite element model of the NSC culture cover slip for optimizing electrical stimulation parameters.<h4>Conclusions/significance</h4>Our method allows for a repeatable fast and accurate stimulation of neurons derived from stem cell cultures to assess their differentiation state, which is capable of monitoring large amounts of cells without harming the overall culture.Richardson N LeãoAmilcar ReisAmanda EmirandettiMichalina LewickaOla HermansonAndré FisahnPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 5, Iss 11, p e13833 (2010) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Richardson N Leão Amilcar Reis Amanda Emirandetti Michalina Lewicka Ola Hermanson André Fisahn A voltage-sensitive dye-based assay for the identification of differentiated neurons derived from embryonic neural stem cell cultures. |
description |
<h4>Background</h4>Pluripotent and multipotent stem cells hold great therapeutical promise for the replacement of degenerated tissue in neurological diseases. To fulfill that promise we have to understand the mechanisms underlying the differentiation of multipotent cells into specific types of neurons. Embryonic stem cell (ESC) and embryonic neural stem cell (NSC) cultures provide a valuable tool to study the processes of neural differentiation, which can be assessed using immunohistochemistry, gene expression, Ca(2+)-imaging or electrophysiology. However, indirect methods such as protein and gene analysis cannot provide direct evidence of neuronal functionality. In contrast, direct methods such as electrophysiological techniques are well suited to produce direct evidence of neural functionality but are limited to the study of a few cells on a culture plate.<h4>Methodology/principal findings</h4>In this study we describe a novel method for the detection of action potential-capable neurons differentiated from embryonic NSC cultures using fast voltage-sensitive dyes (VSD). We found that the use of extracellularly applied VSD resulted in a more detailed labeling of cellular processes compared to calcium indicators. In addition, VSD changes in fluorescence translated precisely to action potential kinetics as assessed by the injection of simulated slow and fast sodium currents using the dynamic clamp technique. We further demonstrate the use of a finite element model of the NSC culture cover slip for optimizing electrical stimulation parameters.<h4>Conclusions/significance</h4>Our method allows for a repeatable fast and accurate stimulation of neurons derived from stem cell cultures to assess their differentiation state, which is capable of monitoring large amounts of cells without harming the overall culture. |
format |
article |
author |
Richardson N Leão Amilcar Reis Amanda Emirandetti Michalina Lewicka Ola Hermanson André Fisahn |
author_facet |
Richardson N Leão Amilcar Reis Amanda Emirandetti Michalina Lewicka Ola Hermanson André Fisahn |
author_sort |
Richardson N Leão |
title |
A voltage-sensitive dye-based assay for the identification of differentiated neurons derived from embryonic neural stem cell cultures. |
title_short |
A voltage-sensitive dye-based assay for the identification of differentiated neurons derived from embryonic neural stem cell cultures. |
title_full |
A voltage-sensitive dye-based assay for the identification of differentiated neurons derived from embryonic neural stem cell cultures. |
title_fullStr |
A voltage-sensitive dye-based assay for the identification of differentiated neurons derived from embryonic neural stem cell cultures. |
title_full_unstemmed |
A voltage-sensitive dye-based assay for the identification of differentiated neurons derived from embryonic neural stem cell cultures. |
title_sort |
voltage-sensitive dye-based assay for the identification of differentiated neurons derived from embryonic neural stem cell cultures. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2010 |
url |
https://doaj.org/article/fedefb16c3f6464ea4f17c5a8c7914aa |
work_keys_str_mv |
AT richardsonnleao avoltagesensitivedyebasedassayfortheidentificationofdifferentiatedneuronsderivedfromembryonicneuralstemcellcultures AT amilcarreis avoltagesensitivedyebasedassayfortheidentificationofdifferentiatedneuronsderivedfromembryonicneuralstemcellcultures AT amandaemirandetti avoltagesensitivedyebasedassayfortheidentificationofdifferentiatedneuronsderivedfromembryonicneuralstemcellcultures AT michalinalewicka avoltagesensitivedyebasedassayfortheidentificationofdifferentiatedneuronsderivedfromembryonicneuralstemcellcultures AT olahermanson avoltagesensitivedyebasedassayfortheidentificationofdifferentiatedneuronsderivedfromembryonicneuralstemcellcultures AT andrefisahn avoltagesensitivedyebasedassayfortheidentificationofdifferentiatedneuronsderivedfromembryonicneuralstemcellcultures AT richardsonnleao voltagesensitivedyebasedassayfortheidentificationofdifferentiatedneuronsderivedfromembryonicneuralstemcellcultures AT amilcarreis voltagesensitivedyebasedassayfortheidentificationofdifferentiatedneuronsderivedfromembryonicneuralstemcellcultures AT amandaemirandetti voltagesensitivedyebasedassayfortheidentificationofdifferentiatedneuronsderivedfromembryonicneuralstemcellcultures AT michalinalewicka voltagesensitivedyebasedassayfortheidentificationofdifferentiatedneuronsderivedfromembryonicneuralstemcellcultures AT olahermanson voltagesensitivedyebasedassayfortheidentificationofdifferentiatedneuronsderivedfromembryonicneuralstemcellcultures AT andrefisahn voltagesensitivedyebasedassayfortheidentificationofdifferentiatedneuronsderivedfromembryonicneuralstemcellcultures |
_version_ |
1718424081077895168 |