Salt templated and graphene nanoplatelets draped copper (GNP-draped-Cu) composites for dramatic improvements in pool boiling heat transfer

Abstract We demonstrate a novel technique to achieve highly surface active, functional, and tunable hierarchical porous coated surfaces with high wickability using a combination of ball milling, salt-templating, and sintering techniques. Specifically, using ball-milling to obtain graphene nanoplatel...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Aniket M. Rishi, Satish G. Kandlikar, Anju Gupta
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
R
Q
Acceso en línea:https://doaj.org/article/feff6c58b7834586a031dc0764cf7425
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract We demonstrate a novel technique to achieve highly surface active, functional, and tunable hierarchical porous coated surfaces with high wickability using a combination of ball milling, salt-templating, and sintering techniques. Specifically, using ball-milling to obtain graphene nanoplatelets (GNP) draped copper particles followed by salt templated sintering to induce the strength and cohesiveness to the particles. The salt-templating method was specifically used to promote porosity on the coatings. A systematic study was conducted by varying size of the copper particles, ratio of GNP to copper particles, and process parameters to generate a variety of microporous coatings possessing interconnected pores and tunnels that were observed using electron microscopy. Pool boiling tests exhibited a very high critical heat flux of 289 W/cm2 at a wall superheat of just 2.2 °C for the salt templated 3 wt% GNP draped 20 µm diameter copper particles with exceedingly high wicking rates compared to non-salt-templated sintered coatings. The dramatic improvement in the pool boiling performance occurring at a very low surface temperature due to tunable surface properties is highly desirable in heat transfer and many other engineering applications.